roboforum.ru

Технический форум по робототехнике.


Обратная задача манипулятора

Обсуждаем рождающиеся мысли и результаты экспериментов.

Re: Обратная задача манипулятора

Сообщение one man » 04 май 2018, 19:09

При решении обратной задачи мы сводим движение к одной степени свободы и задаём соответствующую матмодель любым удобным для нас способом. Например, при движении крайней точки трёхзвенного манипулятора с 5-ю степенями свободы по линии, лежащей на поверхности, последнее звено манипулятора может быть постоянно направлено по нормали к этой же поверхности.
https://vk.com/doc242471809_464742514
https://vk.com/doc242471809_464762824
https://vk.com/doc242471809_464787922
one man
 
Сообщения: 14
Зарегистрирован: 23 апр 2018, 21:37
прог. языки: maple

Re: Обратная задача манипулятора

Сообщение one man » 16 май 2018, 17:12

Комментарии к последним примерам и тексты программ на Maple. Желающие реализовать идею могут найти всю информацию здесь же по ссылкам.
https://www.mapleprimes.com/posts/20925 ... -Multiaxis
one man
 
Сообщения: 14
Зарегистрирован: 23 апр 2018, 21:37
прог. языки: maple

Re: Обратная задача манипулятора

Сообщение one man » 18 дек 2018, 23:12

С позволения администрации ещё один пример.
Модель манипулятора: 5 степеней свободы за счёт соединений +1 степень свободы – переменная длина последнего звена.
https://vk.com/doc242471809_484643237
Данный пример демонстрирует наличие 6-и степеней свободы и возможности очень простого и в то же время универсального метода инверсной кинематики.
Жёлтая и красная точки соединены линией пересечения:
(x-1)^4+(y-3)^4+(z-0.5)^4 - 2^4=0;
x^2+(y-1.5)^2+z^2 - 2.4^2=0;
one man
 
Сообщения: 14
Зарегистрирован: 23 апр 2018, 21:37
прог. языки: maple

Re: Обратная задача манипулятора

Сообщение one man » 18 июл 2019, 17:14

Несмотря на примеры со сложными траекториями, всю обратную кинематику манипулятора можно свести к последовательному движению по отрезкам прямых, то есть к движению по ломаной линии. Для этого потребуется только одна процедура, это процедура вычисления управляющих параметров для движения рабочей точки по отрезку прямой.
На моделях нескольких видов манипуляторов проверена работа алгоритма обратной кинематической задачи перемещения по ломаной линии.
Сначала вычисляются координаты концов всех звеньев манипулятора при помещении рабочей точки в начало ломаной. После этого решается задача движения по первому отрезку ломаной линии. Она решается так же, как и в случае любого участка гладкой пространственной кривой. Но все отрезки ломаной можно описать уравнением одного вида, значит, для получения уравнения очередного отрезка надо лишь подставить в общее уравнение координаты начальной и конечной точек этого отрезка. Поскольку координаты всех звеньев в начальной точке очередного отрезка нам уже известны, – это результат вычислений в конечной точке предыдущего отрезка, – мы просто каждый раз вызываем процедуру решения обратной задачи кинематики для отрезка прямой.
Если манипулятор после подключения к нему питания принимает положение, при котором будут известны геометрия звеньев и значения управляющих параметров, тогда задача заметно упрощается: к ломаной в качестве первого звена нужно всего лишь добавить звено с исходными координатами рабочей точки и координатами первой точки ломаной.
one man
 
Сообщения: 14
Зарегистрирован: 23 апр 2018, 21:37
прог. языки: maple

Пред.

Вернуться в Идеи

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 5

Mail.ru counter