Пример №2. Защитный элемент для схемы двигателя постоянного тока с постоянными магнитами (ДПТ).Из первого примера видно, что при коммутации ШИМом при большой частоте КПД устройства с защитным диодом резко снижается, поэтому, как правило, на коллекторных электродвигателях в промышленности применяют защитный конденсатор.
Рассмотрим применение защитного конденсатора.
Вложение:
Motor.jpg [ 52.08 КиБ | Просмотров: 10100 ]
Так как в данном типе двигателя обмотки возбуждения заменены на постоянные магниты, то все регулирование параметров двигателя сводится к регулированию мощности через обмотку якоря (ротора).
Якорь двигателя содержит несколько обмоток, которые коммутируются коллекторным узлом при повороте вала на определенный градус. Большую часть угла поворота вала (360 градусов) обмотки находятся в замкнутом положении, но есть мертвые зоны отключения обмоток (5-15 градусов), именно из-за этого коллекторного узла и возникают перенапряжения, даже в отсутствие ШИМ модуляции транзисторами.
Когда двигатель рассчитывается на номинальное параметры работы, то при этом учитывается Полное сопротивление обмоток якоря равное Активному + Реактивному сопротивлениям при номинальных частоте вращения и крутящем моменте.
Для понимания процессов происходящих при коммутации двигателя постоянного тока с постоянными магнитами, нужно знать параметры обмоток его якоря, а именно, активное и реактивное сопротивления:
1) Активное сопротивление обмотки якоря. Для двигателей сопротивление обмотки якоря находится в широком диапазоне от 0,01-10Ом, в зависимости от номинального напряжения питания двигателя и его мощности.
2) Реактивное сопротивление обмотки якоря – это индуктивность, умноженная на циклическую частоту. Реактивное сопротивление двигателя нелинейно и зависит и меняется от разных параметров даже во время его работы, потому что обмотки движутся в поле постоянных магнитов статора, в отличие от реле у которого обмотки статичны и на них не действует внешнее магнитное поле. Циклическая частота не постоянна и зависит от питающего напряжения (ШИМ) и от частоты вращения вала (коллекторный узел). Следовательно, реактивное сопротивление не постоянно, а изменяется, поэтому при заклинивании вала якоря, реактивное сопротивление стремится к нулю, и полное сопротивление к активному, а оно очень мало, именно из-за этого двигатель можно «спалить».
3) Также нужно учитывать, что при работе двигателя при снятии напряжения за счет инерции вращения якоря двигатель переходит в режим генератора, что невозможно для реле. И чем больше кол-во витков провода (индуктивность растет), тем существеннее генераторный режим. Не всегда он нужен, иногда его специально стараются избегать конструктивно.
4) Индуктивность обмотки якоря. Из пунктов 1-3 и законов электротехники имеем необходимое номинальное реактивное сопротивление, из которого находим необходимую индуктивность обмоток якоря двигателя при номинальной частоте вращения. Понятно, что кол-во витков обмотки якоря намного меньше, чем у реле, а это в свою очередь ведет к уменьшению индуктивности обмоток якоря по сравнению с реле.
В итоге, именно из-за меньшей индуктивности обмотки якоря двигателя при коммутации, возникают незначительные перенапряжения, по сравнению с релейной схемой – 100-500 В.
Для того чтобы погасить появившееся перенапряжение от самоиндукции ставят конденсатор, как показано на рисунке. Он не замыкает индуктивность саму на себя как в случае схемы реле, а работает в паре с ней. Причем применение конденсатора позволяет добиться довольно высокого КПД, потому что энергия не гасит саму себя, а переходит из электродинамической в электростатическую – параллельный резонанс.
Вложение:
L.jpg [ 12.59 КиБ | Просмотров: 10080 ]
Вроде хорошо на первый взгляд, но есть и здесь отрицательный эффект – возникают самозатухающие колебания с высокой частотой (со сменной знака синусоиды), в зависимости от емкости конденсатора и индуктивности обмоток якоря двигателя, а также гармоники других порядков более высоких частот - радиопомехи. Поэтому и возникают «мухи» на экране телевизора при работе таких двигателей. Формулы можно взять из радиотехники, на таком принципе строятся высокочастотные передатчики радиочастоты.
Как бороться с этим явлением:
1) Повысить емкость конденсатора для снижения частоты колебаний, но так как конденсатор должен быть не электролитическим, то емкость будет прямо влиять на габаритные размеры устройства.
2) Установить конденсатор как можно ближе к коллекторному узлу. Практически конденсатор размещают на корпусе электродвигателя и припаивают на выводы «+» «-». Теоретически можно разместить на самом коллекторном узле между секторами, но нужно учитывать динамические нагрузки при вращении вала якоря, а также, надо будет произвести балансировку якоря двигателя.
3) Экранировать корпус электродвигателя. Если раньше большинство корпусов микродвигателей были из пластмассы с открытым коллекторным узлом, то современные микродвигатели делаются в металлических корпусах и на маленькие мощности изготавливаются с закрытыми коллекторными узлами. Необходимо соединить корпус электродвигателя с минусом аккумулятора и с корпусом устройства или робота (как на автомобиле – корпус является минусом).
Схема, кажется, очень простой, но многие не умеют подбирать параметры конденсатора:
1) Емкость конденсатора колеблется в зависимости от параметров двигателя и находится в диапазоне 0,01-10 мкФ.
2) Номинальное напряжение конденсатора. Многие допускают ошибку при выборе именно этого параметра. Номинальное напряжение конденсатора должно выбираться не на номинальное напряжение питания двигателя, а на величину перенапряжения возникающего при работе двигателя в паре с конденсатором определенной емкости, иначе его сразу пробьет, и он не будет работать. Как правило, при питании двигателя 3-12 В и емкости конденсатора 1-10мкФ, перенапряжение имеет диапазон 15-100В.
Вывод: чем больше напряжение питания, чем больше номинальная частота вращения вала двигателя, чем меньше емкость конденсатора, тем больше перенапряжение.
Пример: при напряжении питания двигателя 5В, мощности 0,5Вт, номинальной частоте вращения 6000об/мин, ставим конденсатор 2мкФ на 50В.
И еще один не маловажный фактор повышения КПД конкретно для приведенной схемы, именно из-за того, что возникают собственные колебания системы, то чтобы не тратить лишнюю энергию, открытие транзистора должно производиться, когда полусинусоида проходит положительный максимум, т.е. должны быть обратная связь по напряжению с обмоток двигателя на контроллер.
Добавлено спустя 3 минуты 25 секунд:Пример №3. Защитный элемент для схемы частотного привода для асинхронного двигателя или инвертора.Рассмотрим упрощенную схему частотного привода и защитные элементы в ней для одной обмотки асинхронного двигателя.
В этих схемах применяют в основном IGBT транзисторы со встроенным обратным диодом. Заметьте, защитный обратный диод стоит не параллельно обмотке двигателя как в схеме с реле, а ставиться параллельно транзистору. В этом очень большая разница!
Вложение:
Invertor.jpg [ 29.51 КиБ | Просмотров: 10139 ]
Любой ЧРП состоит из нескольких блоков:
1) выпрямительный блок - однофазные или трехфазные диодные мосты;
2) блок или звено постоянного тока (напряжения) – накопительные электролитические конденсаторы;
3) инверторный блок;
4) необязательные, но желательные блоки – это сглаживающие входные и выходные фильтры – обычно это дроссели, EMC, RC или LC фильтры, синусные фильтры.
Подчеркиваю, никаких защитных обратных диодов параллельно обмоткам двигателя не ставится.
Так куда же деваются перенапряжения, возникающие на обмотках двигателя при коммутации транзисторного ключа? Они проходят через обратный диод, внешний или встроенный в транзистор, и уходят в звено постоянного тока в электролитический конденсатор большой емкости, который их потребляет и тем самым сглаживает. Из-за диода никакие свободные самозатухающие колебания не появляются. При этом КПД такой схемы довольно высокий, так как энергия не гасится, а запасается в конденсаторе постоянного звена ЧРП, снижая потребление из внешней сети.
Более того, в таких схемах не только защитный обратный диод, но и защитный конденсатор не ставиться параллельно обмоткам двигателя, по причине возникновения паразитных собственных затухающих колебаний, частота которых будет существенно отличаться от необходимой рабочей частоты, выдаваемой ЧРП на обмотку двигателя, которая в разных ЧРП колеблется в диапазоне 0-1000Гц и является квазисинусоидальной.
Еще одной причиной, по которой не ставят конденсатор параллельно обмотке двигателя, является режимы автотюнинга или автоподстройки ЧРП под определенный двигатель, который осуществляется подачей постоянного или импульсного напряжения разной частоты, с помощью которых ЧРП измеряет сопротивление обмоток (активное и реактивное), индуктивность и другие параметры для построения математической модели управления двигателем.
P.S.: надеюсь после такой статьи многие поймут что, чем, как и в каких случаях правильно защищать.
Добавлено спустя 51 секунду:EdGull писал(а):
а разве пик сможет открыть верхний полевик?
мощный - нет не откроет - просто нарисовал для примера - что и откуда управляется.