

eVB Development

Version 1
Copyright © 2000-2001 deVBuzz.com, Inc., Freehold, NJ. USA.
 Page 1 of 11

Using the eVB COMM control
Written by David Knechtges (davidknechtges@yahoo.com)
Edited by Derek (derek@deVBuzz.com)

This example demonstrates the use of the COMM control within embedded Visual Basic.
Serial communications is fundamental to allowing a PC (or in this case a PDA) to talk to
modems or other devices. Modems all generally use the Hayes "AT" command set for
setup. This set of ASCII text-based commands allows the PC to initialize the modem, tell
it to dial a number, hang-up, etc. Other devices use serial communications for
diagnostics and troubleshooting purposes. For example, all cars made since the advent
of computer based diagnostics have a diagnostic port. Generally these ports are located
under the dash, the hood, within the fuse box, or any other number of places. While not
RS-232 based, a conversion can be used to allow a PC to connect to the car's diagnostic
port to allow troubleshooting and diagnosis. Unlike the modem commands, these serial
buses all use binary communications. Basically, this means that all 256 possible
characters are interpreted as their binary value and not their text value.

Embedded Visual Basic's Comm control supports both text-based and binary-based RS-
232 communications. However, the documentation provided with eVB is incorrect when it
comes to binary-based communications. This tutorial will walk through a text-based
communications and a binary-based communications. It will demonstrate where the
documentation doesn't work for binary-based communications, and what the work-
around for binary-based communications is. Note, however, that under Visual Basic 6.0
for the PC, binary-based communications does work properly.

The set-up I am using is an iPaq with a CF sleeve and a CF serial card made by Socket.
On my setup, this device uses COM4. You will need to determine what COM port your
Pocket PC serial device uses for its communication. This tutorial requires that you have
access to a PC with Visual Basic 6.0 installed on it. This allows the Pocket PC device to
communicate with something. You will also need a null modem cable to connect the
Pocket PC device to the PC.

Because this can get a little confusing as to which item I am referring to, when I mention
the PC, this is going to refer to the Visual Basic 6.0 application to talk to the Pocket PC.
When I am mentioning the Pocket PC, this is going to refer to the eVB application.

Because it is much easier to simulate, I will extensively discuss text-based
communications. Binary-based communications will be discussed as to how to make
them work, along with a few code fragments to get you on your way.

eVB Development

Version 1
Copyright © 2000-2001 deVBuzz.com, Inc., Freehold, NJ. USA.
 Page 2 of 11

Text-based Communications
Let's begin with text-based communications and we will begin with the PC side of things.
Follow these steps in order:
1) Create a new project.
2) Go into the Project menu, select components, and add the Microsoft Comm Control
6.0 to the project. You should now see a telephone icon in the component window.

eVB Development

Version 1
Copyright © 2000-2001 deVBuzz.com, Inc., Freehold, NJ. USA.
 Page 3 of 11

3) Place two text boxes on the form.
4) Place a label above each text box.
5) Change one of the label's captions to Received Data and the other to Data To
Transmit.
6) Rename the text box below the Received Data label to ReceivedDataTextBox.
7) Rename the text box below the Data To Transmit label to DataToTransmitTextBox.
8) Create a command button on the form and change its caption to Transmit.
9) Select the Comm control and place it on the form.
10) Set the Comm Port property to the port you are using for communications on the PC.
11) Set the settings property to 19200,n,8,1.
12) Set the Rthreshold property to 1. This will cause an OnComm event any time a
character is received on the serial port.
13) Fill in the form's code as shown:

Private Sub Command1_Click()
 MSComm1.Output = DataToTransmitTextBox.Text
End Sub

Private Sub Form_Load()
 MSComm1.PortOpen = True
End Sub

eVB Development

Version 1
Copyright © 2000-2001 deVBuzz.com, Inc., Freehold, NJ. USA.
 Page 4 of 11

Private Sub MSComm1_OnComm()
 Select Case MSComm1.CommEvent
 Case comEvReceive
 ReceivedDataTextBox.Text = MSComm1.Input
 Case comEvSend
 ' do nothing here for now
 End Select
End Sub

When all done, the PC project should look like:

We will now move to the Pocket PC side of things. Follow these steps for the Pocket PC
application:
1) Create a new project.

eVB Development

Version 1
Copyright © 2000-2001 deVBuzz.com, Inc., Freehold, NJ. USA.
 Page 5 of 11

2) Go into the Project menu, select components, and add the Microsoft CE Comm Control
3.0 to the project. You should see a telephone icon in the components window.

3) Place two text boxes on the form.
4) Place a label above each text box.
5) Change one of the label's captions to Received Data and the other to Data To
Transmit.
6) Rename the text box below the Received Data label to ReceivedDataTextBox.
7) Rename the text box below the Data To Transmit label to DataToTransmitTextBox.
8) Create a command button on the form and change its caption to Transmit.
9) Select the Comm control and place it on the form.
10) Set the Comm Port property to the port you are using for communications on the
Pocket PC.
11) Set the settings property to 19200,n,8,1.
12) Set the Rthreshold property to 1. This will cause an OnComm event any time a
character is received on the serial port.
13) Fill in the form's code as shown:

eVB Development

Version 1
Copyright © 2000-2001 deVBuzz.com, Inc., Freehold, NJ. USA.
 Page 6 of 11

Option Explicit

Private Sub Comm1_OnComm()
 Select Case Comm1.CommEvent
 Case comEvReceive
 ReceivedDataTextBox.Text = Comm1.Input
 Case comEvSend
 ' do nothing here for now
 End Select
End Sub

Private Sub Command1_Click()
 Comm1.Output = DataToTransmitTextBox.Text
End Sub

Private Sub Form_Load()
 Comm1.PortOpen = True
End Sub

Private Sub Form_OKClick()
 App.End
End Sub

When all done, the Pocket PC project screen should look like this:

eVB Development

Version 1
Copyright © 2000-2001 deVBuzz.com, Inc., Freehold, NJ. USA.
 Page 7 of 11

Now, run the PC program and the Pocket PC program. You will notice that data is being
transferred successfully between the PC and the Pocket PC.

Try differing lengths of messages in the data to transmit box on both the PC and the
Pocket PC sides and notice what happens. You will see that up to about 8 characters, the
data is transmitted and received fine, but beyond that, it starts to clip off! This obviously
is not the intended behavior. A little modification to the programs is necessary to
prevent this behavior.

After looking at the Rthreshold property, you may be thinking that this is how to get the
right lengths of data in. This would work for fixed-length messages. In other words, the
program knows ahead of time how many characters it is going to receive in each
message from the other device. Normally, however, this is not known and other methods
must be employed. These can either be software or hardware based. Software based
methods use the data that is being transferred to determine the start and end of a
message. Hardware based methods can use either the clear to send/request to send
lines (CTS/RTS) or the data terminal ready/data set ready lines (DTR/DSR) to indicate

eVB Development

Version 1
Copyright © 2000-2001 deVBuzz.com, Inc., Freehold, NJ. USA.
 Page 8 of 11

the start and end of messages. Normally, however, the CTS/RTS is used for a receiving
device to "hold off" the transmitter while it is processing incoming data.

While working on this tutorial, I discovered that the ComEvDSR event within the Pocket
PC does not work properly. Basically, I was taking the programs as shown above, and
added a timer to the PC program that toggled the DTR line on the PC side every 500 ms.
(The code was written as: MSComm1.DTREnable = Not MSComm1.DTREnable). When
looking at the events on the PocketPC, the ComEvDSR event was not occurring, but the
ComEvCD event was. This is the carrier detect event. If I did this exact thing in reverse,
i.e. the Pocket PC side toggling DTR, and looking for ComEvDSR on the PC side, it
worked properly. In other words, I am saying to use the DTR/DSR functionality at your
own peril!

So, back to the original problem.. We can get the messages in properly using a form of
CTS/RTS for our application. Let's first get the programs coded and running, then I will
explain what these changes are doing.

For the PC side, add a timer to your form, set the Enabled property to False, and set the
Interval property to 60. Select the MSComm control on the form and set its Sthreshold
property to 1. This property will cause the comEvSend event to fire when the transmit
buffer is empty. Now some new code will be added to the form. The code for the form
should now look like this:

Dim InputData As String
Private Sub Command1_Click()
 MSComm1.Output = DataToTransmitTextBox.Text
End Sub

Private Sub Form_Load()
 InputData = ""
 MSComm1.PortOpen = True
End Sub

Private Sub MSComm1_OnComm()
 Select Case MSComm1.CommEvent
 Case comEvReceive
 InputData = InputData + MSComm1.Input
 Case comEvSend
 Timer1.Enabled = True
 Case comEvCTS
 ReceivedDataTextBox.Text = InputData
 InputData = ""
 End Select
End Sub

eVB Development

Version 1
Copyright © 2000-2001 deVBuzz.com, Inc., Freehold, NJ. USA.
 Page 9 of 11

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 ' all data sent, so toggle rts.
 MSComm1.RTSEnable = Not MSComm1.RTSEnable
End Sub

On the Pocket PC side, change the Sthreshold property in the Comm control to 1. Next,
we will be changing the code. The code for the form on the Pocket PC side should now
look like this:

Option Explicit
Dim InputData As String
Private Sub Comm1_OnComm()
 Select Case Comm1.CommEvent
 Case comEvReceive
 InputData = InputData + Comm1.Input
 Case comEvSend
 ' all data sent, so toggle RTS
 Comm1.RTSEnable = Not Comm1.RTSEnable
 Case comEvCTS
 ReceivedDataTextBox.Text = InputData
 InputData = ""
 End Select
End Sub

Private Sub Command1_Click()
 Comm1.Output = DataToTransmitTextBox.Text
End Sub

Private Sub Form_Load()
 InputData = ""
 Comm1.PortOpen = True
End Sub

Private Sub Form_OKClick()
 App.End
End Sub

Go ahead and run both programs. You should now see that anything you type on either
side gets transferred properly to the other side.

Now for an explanation of what the code is doing... When a message has completed
transmission, the side transmitting toggles the RTS line thereby causing a CTS event on
the other side (remember that RTS and CTS are swapped in a null modem cable). This
signal indicates that a message is complete, and allows the other side to begin
processing it.A question you may be asking is why the code is different between the two

eVB Development

Version 1
Copyright © 2000-2001 deVBuzz.com, Inc., Freehold, NJ. USA.
 Page 10 of 11

sides to get this to work. Feel free to code them exactly the same on both sides (getting
rid of the timer on the PC side) and see what the results are. Basically, what is
happening is that the PC is waiting about 60 milliseconds after its transmit buffer is
empty before asserting the RTS line. The Pocket PC is not doing that. If you do not wait
the period of time on the PC side before asserting the RTS line, you will notice the Pocket
PC side delaying by one transmit display of its data. For example, the first time on the
PC you try to transmit ABC, the Pocket PC will be blank in its received data text box. The
second time you try to transmit DEF, the Pocket PC will display ABC. I chose 60
milliseconds because the Windows event timer on the PC is a 55 millisecond timer. Feel
free to decrease the timeout on the timer downward and see the results. It does get very
interesting down around 15-25 milliseconds. I may be wrong, but I believe the reason
this happens on the Pocket PC side is that it does not finish receiving its data before it
gets the CTS event and then fires it anyway. The PC side, however, does not exhibit this
same behavior. It finishes receiving its data and then fires the CTS event as you would
expect.

If you wanted to, you could make the code the same on both sides, just use a timer on
both sides, and things should work out just fine.

This basically concludes text-based communications. Now for binary communications...

Binary Communications

The Comm control on the Pocket PC supports binary communications. NOTE: The
documentation provided with eVB is wrong! I ran into many problems getting this to
work and decided to share how I solved this problem. Binary communications using the
Comm control under eVB must be done using text-based communications and "faking
out" the control, so to speak. I found a solution under MSDN on Visual Basic 4.0 for the
PC. I decided to try it out on eVB, and lo and behold, it worked. Set up the Comm
control as though you were using text-based communications, i.e. set the Comm
control's InputMode property to comInputModeText. Set the Comm control's Rthreshold
property to 1. Set the Comm control's InputLen property to 0.

The following code fragment describes how to transmit a byte:

Dim TransmitByte as Byte
MSComm1.Output = Chr(TransmitByte)

The following code fragment describes how to receive a byte stream of up to 100 bytes:

Dim TmpStr As String
Dim StrLen As Long, I As Long
Dim FileData(100) As Byte

eVB Development

Version 1
Copyright © 2000-2001 deVBuzz.com, Inc., Freehold, NJ. USA.
 Page 11 of 11

While MSComm1.InBufferCount > 0
 TmpStr = MSComm1.Input
 StrLen = Len(TmpStr)
 For I = 1 To StrLen
 FileData(I) = CByte(Asc(Mid(TmpStr, I, 1)))
 Next I
Wend

A description of what is shown above is probably necessary now. On the transmission
side, we are taking the byte to be transmitted, converting it into a character (through
the Chr function), and writing it to the Output property of the Comm control. Easy
enough. Just a simple conversion is all that is needed. The reception side is not as clean,
though. First, the "text" data is read from the input property of the Comm control into
the TmpStr string. Then, using a loop to walk through the entire string, each character is
extracted from the string using the Mid function, converted to ASCII through the Asc
function, and then converted to Byte through the Cbyte function. Then the Byte value is
written to the FileData byte array. The while loop checking the InBufferCount property is
necessary to get in any more bytes in the byte stream that may appear while we are
walking through the previous set of data.

Take the code fragments above and experiment.. I used this binary based
communications successfully on a project I am currently working on that takes the
Pocket PC and allows it to communicate with a serial device for configuring and
troubleshooting some of my company's products.

Hopefully you now have an idea of how the Comm control works using a real application
and will be able to do some of your own communications!

