ROBOT HAND CONTROL

IMPLEMENTATION OF SERIAL INTERFACE

Thesis work of Toru Kizaki
4/10/2010

Supervisors - PhD. Johan Tegin, KTH Machine Design, Mechatronics Lab.
Professor. Jan Wikander KTH Machine Design, Mechatronics Lab.

Acknowledgement
I appreciate the great support and help of Johan Tegin during this thesis work. Due to his
advises my work had been done well. Beside this project work, he also gave me various
advises for the life in Stockholm.
I thank Afifa Lahatulain for daily cooperation and sharing various informations.
I thank Bengt Eriksson for updating Matlab and dSPACE software to latest ones.
I thank Mikael Hellgren for helping when the electric power supply of the lab was stopped.
I thank Staffan Qvarnstrom for introducing of the soldering machine and ordering various
components.
I thank William Sandqvist for teaching me regarding PIC programming.
In the end, I thank all the people who helped and supported me.

07-10-2010 Toru Kizaki

Contents

(670 01 (=] 01 =TT PPV P PPN -3-
L INETOTUCTION. ...ttt ettt b ettt bt bbb e b e e e st eaeebena e b e -5-
11 IMIOTIVATION. ...ttt e -5-
1.2 Specification of the system of the current handcccoovviiiiiiiiiinc e, -5-
13 Problem regarding the interface between the magnetic encoder and the computer............. -6-
A O 1 o] [=Tox 1)Y= USROS -7-
3 Communicating COMPONENTSccuiivieierieereeieeteeteste e e e steerestesreesbesreesesresssessesseessesteessensesseanes -8-
T R 151 0 O S PROPRRR -8-
K ¢ 151 o O =l OSSR -8-
4 The problem regarding direCt COMMUNICALIONcccceeviiiieiieitieiececece e -9-
5 The relay COMPONENT.....c..ciiiiiere ettt sttt ettt be b b e -11-
5.1 Regirement of the relay COMPONENTccoiririririceeee e -11-
5.2 Selection of the relay COMPONENTooieiiiiceeeceeeeee e -11-
5.3 PICLOBFBO0 ...ttt ettt sttt et b e sttt e be e saeesaneea -11-
6 The Serial INEITACE.......c..ceviiiriciictc et -13-
6.1 Communication between AS5040 and PICL1EF690ccccoveireinieninenineneeeneeieenes -13 -
6.1.1 The hardware and the software for the development...........ccccevviveceiieieceeneene, -13-
6.1.2 The Structure and the Flow of the datac.ccceeineiniininiiceccs -15-
6.1.3 Implementation of the SSI 0N PICLEF690..........cccovceeeeveeieeceeeseeee e -16 -
6.2 Communication between PIC16F690 and dSPACEO®..........ccocccveereinenineneceeene -18 -
6.2.1 The hardware and the software for the development............cccccovvvvecerivrcenrenenne. -18-
6.2.2 The structure and the flow of the datacccoevnincininies -19-
6.2.3 Implementation of the asynchronous serial interface on both PIC16F690 and
dSPACE- 21 -
6.3 Data transferring from three magnetic ENCOUEIS........cccvevevereecerieeeere e -23-
6.3.1 D= TRV O o F= 11 o T 1 o o 1R -23-

6.3.2 Data transferring in COrreCt OFAErccivveviiiieieseceee e
6.3.3 Implementation into the KTHANG ...
6.4 Performance Of the SYSIEM ..o
6.4.1 The dead DANG.........cccoeiiiiiiieiee et
6.4.2 The SAamMPliNG tIMEoceciieeee ettt b e sanenes
CONCIUSIONS ...ttt sttt b bt bt bbb s et e e e st eneebesbe b ee
AAPPEINAIX .ttt b e bt h e h e h bt e b et n et et ebeene b e
8.1.1 Whole C code fOr PICLBFBI0cccccereiiriiuinieiiieinicitrieenietsrei e
8.1.2 Simulink model for the serial reception at ASPACEQ............cccooveverieinenenerennenn
8.1.3 Schematic diagram of electrical CirCUIL...........ccccoevierieirininirereeceeee e
RETEIBINCE ...ttt

1 Introduction

1.1 Motivation

In these days, various domestic robots are studied. Among the various parts of the domestic
robot, hand is one of the parts which have been studied and developed by many researchers.
Mainly the research regarding robot hand is focusing on how to control hand versatilely.
The example is the work in the Columbia University. Matei has been worked on the method
of hand controlling. In order to make a dimensionality of the grasping as small as possible,
he proposed the grasping method using “Eigengrasps” [1].

In this research work, the authors focused on how to make human-like-hand which can be
applied to nursing care robots. For nursing care robots, the versatility, lightness and low-
cost are required. Each finger of the hand is moved by a tendon, and the tendon is pulled by
the motor embedded in palm. Because of this, the hand acquired higher versatility than the
hand which has motors at each finger joint. And the lightness has been achieved by using
DuraForm® PA plastic [2]. Low-cost is also achieved by using mass-produced electrical or

mechanical components.

1.2 Specification of the system of the current hand

Figure 1.1 and Figure 1.2 show the current hands. Figure 1.3 shows inside of the hand.
Each finger is driven by the geared motor via tendon. The rotational angle of the motor is
obtained by the magnetic encoder placed vertically to the central axis of the motor shaft.
The angular position data had been transferred via PWM interface from the magnetic

encoder to the dSPACE© which is the interface board embedded in the computer.

Figure 1.1 Previous hand prototype Figure 1.2 New hand prototype [3]

Hngéfl
&

i I -

—

Tendon

Finger 2

-
-

Magnetic encoder Geared motor

Figure 1.3 Inside of the previous hand

1.3 Problem regarding the interface between the magnetic encoder and the
computer.

In the previous work, the fault of the PWM interface was revealed, therefore there is a
“Dead Band” at ASPACE© which means the area of the duty cycle below 0.05 and above
0.96. The PWM signal whose duty cycle is in dead band is not reliable because of the
jumping or fluctuation of the signal.

In order to make hand work smoothly, avoidance of data fluctuation is desired.
The cause of fluctuation is the disability of dSPACE® in receiving PWM signal of near 1 or
0 duty cycle, therefore of dead band. So, PWM interface was needed to be replaced by the

serial interface [4].

2 Objectives
The objective of this work is to implement the serial interface for the transferring of the
angular position data from the magnetic encoders to the dSPACEQ.

More concretely, the serial interface is implemented by using a micro controller as a relay
device in between the magnetic encoders and dASPACE®©. The data is transferred via
synchronous serial interface from the magnetic encoders to a micro controller, and via

asynchronous serial interface from a micro controller to the dSPACEQ.

3 Communicating components

3.1 AS5040

AS5040! is a contactless magnetic rotary encoder. The chip measures the angular position
of the two-pole magnet rotating over the center of the chip. The typical arrangement is
shown in Figure 3.1. The pin configuration is described in Figure 3.2.

The resolution of the angle is 0.35 degree?. This data is output in both a PWM signal and a
serial bit stream. The duration of the PWM signal is 1 ms, therefore the sampling frequency
1s 1000 Hz. The maximum read-out frequency of a serial bit stream is 1 MHz. One cycle of
the data consists of 16 bits, so the sampling rate of the angular position data is 62.5 kHz.
AS5040 has the Daisy Chain mode in which the angular position data from multiple

AS5040 devices can be transferred through one serial line [5].

3.2 dSPACE®

dSPACE® is an interface board placed in between a computer and other devices. The board
which is used in this work is “DS1104 R&D Controller Board”. This board has A/D, D/A
converters, 20 bit digital 1/0, serial interface3, and PWM ports.

“DS1104 R&D Controller Board” is a real-time hardware, and with Real-Time Interface
(RTD the code is generated from Simulink models via Real-Time Workshopl6].

MagINCn [1 O 16 1vDD5V
MagDECn | 2 15| 1VDD3V3
A LSB U3 > u[InNe
B Dir V[__|4 g 13| INC
NG 5 S r2—PwuMiss
Index WL 6 S pficsn
VSS[7 10 1CLK
Progr— 8 9 1DO
Figure 3.1 Magnetic encoder “AS5040” with magnet [5] Figure 3.2 Pin configuration of AS5040 [5]

1 AS5040 is produced by “austriamicrosystems AG.”.
21024 positions per revolution.
3 dSPACE®© has RS232, RS422, RS485 ports.

Figure 3.3 dASPACE© DS1104 R&D Controller Board [6]

4 The problem regarding direct communication
In the previous work, the angular position data from the AS5040 magnetic encoders are
transferred by using PWM signal. However, as referred in 1.3, dSPACEO© has the “Dead
Band” that means the band of the duty cycle, less than 0.05 and more than 0.96. In this
“Dead Band” fluctuation or jumping of the received data occurs.

So, it is proposed to use serial interface instead of using PWM. Basically, serial interface
has no “Dead Band”. AS5040 has synchronous serial communication function, however
dSPACE® has no synchronous serial interface. Synchronous serial interface is a kind of
interface requiring clock signal for communication. So, direct communication between
AS5040 and dSPACEQ is not feasible.

On the other hand, the dSPACE®© has several asynchronous serial interfaces such as RS232.
That is a kind of interface requiring no clock signal.
There are three options of the measure to solve this problem.
1. To change AS5040 to another component which has the asynchronous serial interface.
2. To change dSPACE® to another device which has the synchronous serial interface.
3. To insert a relay component which translate synchronous serial data from AS5040 into
asynchronous serial data for dSPACEOQ.

In order to choose one of these three options, the decision matrix was made. This matrix is
shown in Table 4.1. There are five criteria. The most important criteria are “Reliabilty of
the Communication” and “Speed of the Communication”.

“Using relay component” is inferior to other two options in Reliability.

In Speed, “changing dASPACE©” is the best, the score of “Using relay component” is the
lowest because the delay of the time occurs while translating.
In Complexity, “Changing dSPACEQ©” is the worst because changing dASPACE©O means
rewriting the whole code for the controlling of the hand.
In Cost, “Using relay component” is the best. Translation does not require complicated
system, so a kind of small micro controller will be enough for this purpose.
In Adaptability, Option 3 is the best. The relay component will be easily adapted to some
changes of both AS5040 and dSPACE®.

By summing up each scores multiplied by Weight, it is found that “Using relay component”
1s the most appropriate.
So, It is decided to use the relay component to convert the synchronous serial data from

AS5040 into the asynchronous serial data for dASPACE®Q.

Table 4.1 Decision matrix to decide how to implement the serial interface

Reliability of Adaptabilit
clabuity o Speed of the . aprabLity
the .. Complexity | Cost for Future Sum
.. Communication
Communication Improvement
Changing
AS5040 8 6 6 3 7 220
Changing
8 10 1 1 1 195
dSPACE©
Using relay 5 4 - 9 9 995
component
Weight 10 10 5 5 5

-10 -

5 Therelay component

5.1 Regirement of the relay component

The requirements for the relay component is

1. Implementation of the translation of the data is feasible.

2. The speed of transferring of the data is 1 ms per an angular position data.

In order to fulfill Requirement 1, the relay component has to be a programmable component
such as a micro controller. For Requirement 2, the frequency of the clock signal of the
component must be high enough to transfer a data within 1 ms. However, exact time is not

clear until when the system is implemented.

5.2 Selection of the relay component
A microcontroller is suitable for the relay component. They vary from 8-bit one to 32-bit one.
However, the translation of the data is comparatively simple, so the simple component is
suitable for the purpose.

PIC*1s a programmable microcontroller produced by Microchip Technology Inc. It has
simplicity and there is an integrated developing editor for this chip.
In the PIC series, PIC16F690 has the function of the serial interface® and the maximum
frequency of the clock is 20 MHzé. This chip fulfills the requirement written in 5.1.
PIC16F690 was determined to be used for the translation of the data from AS5040 to
dSPACE®.

5.3 PIC16F690

PIC16F690 is a 20-Pin Flash-Based 8-bit microcontroller which is produced by Microchip
Technology Inc. PIC16F690 is shown in Figure 5.1. The configuration of the pins is shown
in Figure 5.2. The frequency of the internal clock is 8 MHz, and the frequency can be raised
up to 20 MHz by using external clock source. This chip has the function of EUSART?,

therefore serial interface can be implemented on this chip easily [7].

4 Peripheral Interface Controller
5 EUSART
6 Requiring external oscillator such as crystal oscillator

7 Enhanced Universal Synchronous Asynchronous Transmitter

-11-

This component can be programmed by using computer. The MPLAB IDE is the
integrated development editor distributed by Microchip Technology Inc. The interface
between PIC16F690 and a computer is provided by PICkit2. The code written in MPLAB
IDE is translated to machine language and transferred to PIC16F690 through the PICkit2.

Figure 5.1 PIC16F690

VDD —=[]1 ™ 20[]=— Vss
RAS/T1CKI/OSC1/CLKIN =—=[]2 19[]== RAO/ANOD/C1IN+ICSPDAT/ULPWU
RA4/AN3TT1G/OSC2/CLKOUT =—=[]3 18[]=+ RA1/AN1/C12INO-/VREF/ICSPCLK
RA3/MCLR/NPP —[]4 g 17[]=+ RA2/AN2/TOCKIINT/C10UT
RCS/CCP1/P1A -—[]5 © 16[]<«» RCO/AN4/C2IN+
RC4/C20UT/P1B =—=-[]6 € 15[]=«= RC1/ANS/C12IN1-
RC3/ANTIC12IN3-/P1C =[] 7 ;—f 14[]== RCZ2/ANG/C12IN2-/P1D
RCG6/ANS/SS <—»[]8 13[]=—= RB4/AN10/SDI/SDA
RC7/AN9/SDO =19 12[] = RB5/ANT1/RX/DT
RB7/TX/CK =[] 10 11 [J == RB6/SCK/ISCL

Figure 5.2 Pin configuration of PIC16F690 [7]

-12 -

6 The serial interface
6.1 Communication between AS5040 and PIC16F690

6.1.1 The hardware and the software for the development
The hardware for the development consists of three components, the AS5040 on the testing
board, and the geared motor® with the magnet attached on the top of the shaft and the
PIC16F690 on thePICkit2 demo board. The geared motor is fixed on AS5040 testing board
by using a jig, so that the magnet on the motor can always stay within the X-Y-Z tolerance
limits of the AS5040. PICkit2 is the interface device between a computer and a PIC, and
used when PIC is programmed. Figure 6.1 shows the geared motor, Figure 6.2 shows the
AS5040 on the testing board, Figure 6.3 shows the geared motor and AS5040 testing board
connected by the jig. Figure 6.4 shows the PIC16F690 on the PIKkit2 demo board. The
simplified schematic diagram is shown in Figure 6.5.

The PIC16F690 was coded in C. The C code was written on MPLAB IDE v8.53, and
MPLAB IDE v8.53 is the Integrated Developing Editor distributed for free by Microchip
Technology Inc. The compiler of the C code was CC5X distributed by B Knudsen Data,

Norway. Those software which was used for coding are summarized in Table. 6.1

Geared Motor
HS-GM21-DLW, S.T.L.JAPAN

AS5040

Figure 6.1 Geared motor Figure 6.2 AS5040 on the testing board

8 HS-GM21-DLW, S.T.L Japan

-13-

®

Geared Motor AS5040

Figure 6.3 Geared motor and AS5040 testing board

Figure 6.4 PIC16F690 on PICkit2 demo board

Table. 6.1 The software used for coding

The name of the software summary Distributor
MPLAB IDE v8.53 Integrated Developing Editor Microchip Technology Inc, USA
CC5X C compiler B Knudsen Data, Norway

-14 -

vCC

16

1 |]——Lu
=] HagIHNCn VDD SV
—| HagDECn VoDava—
= A_LSE_U HC3E [—
— B_Dix_W HCZ —
—| HC1 PUE_LSB—
= Index W CEn
— V55 CLKE
58— Frog oo 5
ASS040
wCC
1
WD wes
—| PAS/TICKI/OSCL/CLEIN MﬂIMDICLINlIICSPbA?IULPQ
=] RA4SANZSOSCZ/CLEOUT RALANL/CLZIND=/Vref/ICSPOQEY GHD
— RAI/HCLR Vpp PAZ FANZ STOCEI/INT /CLOWT
RCS/CCPL/PlA RCO/AN4/CLZINT—
=] RC4/CZ0UT/PLE RCL/AMEfCLZINT—
= RC3I/ANT/CLZINZ-/PLIC RCZ ANE/CLZINZINZ-/PXIr
RCE/ANS /SR RE4 /ANL0/3DTI fSDic—
— RC?SANDSEDO PES/ANLL PE/DTE
=1 BB?/TH/CH REE /BCE/SCH—
10 11
PIC1GFEID

Figure 6.5 Schematic diagram of the connection between AS5040 and PIC16F690

6.1.2 The Structure and the Flow of the data

Magnetic encoder AS5040 has the Synchronous Serial Interface (SSI), and transmits a data
by 16 bits. 16bits consist of 10 bits of the angular position data, and 6bits of the status bits.
Figure 6.6 describes the schematic of the SSI of the AS5040. The resolution of the angular

position data is shown below.

360
—— = 0.35deg 1)

210 —
The SSI of the AS5040 is synchronized with the external clock signal, therefore the speed of
the transmission depends on the frequency of the external clock signal. The maximum
tolerable frequency of the external clock signal is 1 MHz. At the end of the one cycle of the
transmission a pulse signal is also required at CSn pin of the AS5040.

The three lines are necessary for the transmission. One is the line for the data, and one is
for the clock signal, the last one is for the CSn signal.

PIC16F690 can deal with only 8bits data, so the 16bits from the AS5040 must be split into
two 8bits data in the PIC16F690. Therefore, the receptions at the PIC16F690 are done

-15-

twice for one cycle of the data from the AS5040. Figure 6.8 describes the schematic of this
flow of the data.

6.1.3 Implementation of the SSI on PIC16F690

The algorithm of the reception mainly consists of transmitting the clock pulse, and reading
the one bit of the data. This algorithm is described in Figure 6.7 as a flowchart. This
algorithm is implemented in the function “serial_rec_mag (char* serial_upper, char*
serial_lower)”.

Whole source code is attached on Appendix.

t
Csn tokre Towkiz NP PLLEILN
< - :n—
] 8 1 [® [
CLK A A A 4
i } } i |
i i | I; [\f 1t Mag i Mag | |/ Even 'll i
DO— i {Dg | D8 \ D7 I D6 i D5 ! D4 :l D3 D2 D1 DO lOGF GOF{ LIN l‘NC |DE‘”}' PAR .'T_ LDQ |
! I | |
e e | |l
- . | I
tooacive tD?“""’ Angular Position Data ! Status Bits J t oo Tristate
- >t g

Figure 6.6 SSI with absolute angular position data

-16 -

Ll [T TP T TPl PITTT]
J

AS5040 AN A
‘ h'd Y
(Magnetic Encoder) Data bits (10 bit) Status bits
(Data of the angular position) (Bbits)
SSI

7 bit 0 bit

(char) Serial_upper | 9 | | | | I I | 2 |
PIC16F690
(char) Serial_lower | | 0 | I I | I I |
Figure 6.8 Schematic of the data flow
Start

(—

~N
Prepare variables

-(char) serial_upper
- (char) serial_lower

]\/l)

N
Set clock signal low
Start the reception

I\/l J

N

Transmit one clock pulse

(=

Read data

Put data in ”serial_upper”

J

U

No
”serial_upper” is full J/

/ > Transmit one clock pulse

4

Read data
Put data in ”serial_lower”

U
Yes@

No
”serial_lower” is full /

=) ,
Transmit one CSn pulse
\
R
Terminate
\

Yes U

7/

Figure 6.7 Flowchart of the SSI reception

-17 -

6.2 Communication between PIC16F690 and dSPACE®

6.2.1 The hardware and the software for the development

The hardware is PIC16F690 and dSPACE®©. The dSPACE®© has a port for the
asynchronous serial interface (RS232) and PIC16F690 also has the function for the
asynchronous serial interface called EUSART. So, the RS232 communication between
these two devices is feasible.

The connection between PIC16F690 and dSPACE®© is shown in the simplified schematic
diagram in Figure 6.9. There is an inverter circuit between PIC16F690 and dSPACEQ©. The
reason of that is explained in 6.2.2.

The software is MPLAB IDE v8.53, CC5X, MATLAB Simulink, and dSPACE Control Desk.
MPLAB IDE v8.53 and CC5X were used in coding of the RS232 transmission of the
PIC16F690. MATLAB Simulink was used in implementing the function of the RS232
reception of ASPACE©. dSPACE Control Desk was used as a graphical user interface of the
dSPACE®. Those software were summarized in Table 6.1

VoD
5V
1 20
oD W58
= RAS/TICEI/OSC1/CLEIN RADS ANOSC1IN+/ ICEPDAT/S ULRSY %GND
— RAdSANISOSC2SCLREOUT RALS AN/ CLI2IND-/VEef/ICSPPER
= RAI/MCLE/SVpp RAZS ANZ/ TOCKL/INT/ Clops
— RESS/CCPL/PLlA RCDSAMNASCL2IN—
= RC4/CZ20oUuT/PlB RC1/ANS/Cl12INF—
=~ RCI/ANT/CI12IN3-/PI1C RC2/ANG/C12INZINZ-/PRE
= RCESANB/SSE RE4SANLOS SDI/ S0
— RC7/AN9/5D0 RBS/AN1L/ R/ DE—
RET/THSCK REB&S BCK/ 8CI—
10 11
PIC16FE30
/ T ——_——————— \
I -]
| 1.00k0 i
| I —_
O
| ! T
| —1—0
| —
| o
| 10k | —f@
| 2N3304 GMND
| e
| GND | dSPACE_D-subS{Male)
\\ Inverter V4

Figure 6.9 The schematic diagram of the connection between PIC16F690 and dSPACE©

-18 -

Table 6.1 The software

The name of the software Summary Distributor
MPLAB IDE v8.53 Integrated Developing Editor Microchip Technology Inc, USA
CC5X C compiler B Knudsen Data, Norway

Tool for Model-Based designing of

MATLAB Simulink .
real time system

The MathWorks. Inc, USA

dSPACE Control Desk GUI of the dSPACE dSPACE GmbH, Germany

6.2.2 The structure and the flow of the data

RS232 1s one type of the asynchronous serial interface, and usually uses three lines, one for
transmission, one for reception, the last one for sharing ground level. However, in this
developed system, transferring of the data is one-way traffic, from PIC16F690 to dSPACEQ,
so only two lines are necessary. Currently, D-sub9 connector is usually used for RS232
communication. The configuration of the pins of the D-sub9 connector is shown in Figure
6.10.

The asynchronous serial interface does not require the clock signal. Instead of using clock,
the timing of transmitting or receiving is set in both devices as the baud rate. Therefore,
the baud rate set in both devices need to be the same value as that of each other, otherwise
the communication would fail. The unit of the baud rate is “baud”.

In addition, the start bit and the stop bit are used to synchronize each other. Usually start
bit is LOW “0”, and the stop bit is HIGH “1” in RS232 communication. However, in
dSPACEQO, the definition of the start bit and stop bit are different from that. The definition
of Start bit and Stop bit are unchangeable by using codes in both devices. That is the reason
of inverting the logic of the data in between PIC16F690 and dSPACE®© by using inverter

circuit.

_ As the characteristic of RS232 communication, the logic of
— Data carrier detect

fo——— Data set ready the transmitted data is inverted. For example, the data

20— Feceive data
{ O———Request to send “11000011” will be transmitted after inversion, then received
2 30— Hans;nrt datg

O—— Clear to zen « »

4 0—— Data terminal ready as "00111100".

40 5 o E:Bﬁ é?g:%%tﬁ& EUSART function of the PIC16F690 could do serial

. communication almost automatically with only a few
Protective ground

initializations. Figure 6.11 describes the transmission

sequence of the PIC16F690 by using EUSART. After

Figure 6.10 D-sub9 (Male) pinout [8]

-19-

putting the data in the 8bit register called TXREG, that data is automatically transmitted

by PIC16F690.
The data from the AS5040 is 16bits, and stored in two 8 bits variables in PIC16F690. So,

two transmissions are required for one transmission of 16bits data. The data flow is shown

in Figure 6.12.

Write to TXREG i i 5 5
word 1 word 2
BRG Output L L. 1 L1 L1 I
(Shift Clock) , : 0 S—‘
TXICK r ')
pin oo Startdit hit0 xC b1 X S S X bit7/8_/sopbit \Startot < pito
TXIF bit 1Tey —w -\ | — Word 1 | ‘Word 2
(Transmit Buffer L L (C
Reg. Empty Flag) —= - | Tov 1)
TRMT bit Word 1 —— Word? —
ReéTrgrl':]Spr{;lthlgg} Transmit Shift Reg Transmit Shift Reg
’ ((
J)
Note: This tlmlng diagram shows two consecutive transmissions.

Figure 6.11 Sequence of the asynchronous serial transmission of EUSART of the PIC16F690

7 bit Obit
PIC16F690 9 2
(char) Serial_lower - 1 |0 |0 IO |0 |1 |
EUSART - - -
Stop bit$ 7 bit Obit Start bit
Line 9 2
(char) Serial_lower 0 |1 |1 | 1 |1 |0 |0 |
1 The data is inverted automatically by PIC16F690.
7 bit Obit
(char) Serial_upper u
Inverter circuit 9 2
(char) Serial_lower E- 1 |O |O |0 |0 |1 I 1 |
Inverter circuit was added to invert the start and %top bits. Howeuver, it is followed by the inversion of all the others.
7 bit Obit
dSPACE®© ° 2
(char) Serial_lower - 1 |0 |0 |0 |O | 1 |
1

Figure 6.12 The data flow between PIC16F690 and dSPACE©

-20-

6.2.3 Implementation of the asynchronous serial interface on both PIC16F690 and
dSPACE

The code for the serial reception was also written in C.

The algorithm is implemented in the function “serial_tran_rs232”. In this algorithm, first,

the configuration is initialized. Setting of the baud rate is included in the initialization. The

baud rate was set 55556 baud in this experiment, and to set this value, the corresponding

value must be set in BRGH and SPBRGH and SPBRG register. Second, the data is

transmitted. Transmission is started immediately after the data has been put in TXREG

register. The flowchart of this algorithm is shown in Figure 6.14.

The RS232 reception of ASPACE©O was coded by using MATLAB Simulink. The model for
the RS232 reception has already been implemented in the library of the Simulink. Although
the implementation of the RS232 reception is simple if this model is used, the initialization
such as the setting of the baud rate is still required. Especially, the baud rate must be set to
the same value as that of the configuration of the PIC16F690, therefore 55556 baud.

After the reception, the split data was combined again, this is the finish of the data
transferring from the AS5040(magnetic encoder) to the dSPACE®©. This algorithm of the

RS232 reception is shown as a flowchart in Figure 6.13.

-21-

Start

(—

Initialization
- set Baud rate
- set other registers

(—

Write the 16bit data
in TXREG register
Start the transmission

(—

e A

Wait until the finishing of the
transmission

4

Clear TXEN register
End of the transmission

\ & J

Figure 6.14 Flowchart of the RS232 transmission of the PIC16F690

Start

(—

Receive 16bit data
(char) serial_upper
(char) serial_lower

|

=

Extract STATUS bits
from ”serial_lower”

-

Combine ”serial_upper”
with remained 2 bits of
”serial_lower”

—

Terminate

, \ Wy = W 2
J/ .
uint1G Qy=Qu <2
Data Type Conversion upperbits
DES11042ER_SETUP
~\
2 RiBytes - Bitwize W= o T 286
- t16 AND Qy=0u=>5
Serial Receive NumRXBytes 0=CO Ey=Eu
Y, Data Type Corversiond piask TowerZbits
Status
LES11045ER_RX
) \
J I
Simulink model
~\
J

Figure 6.13 Flowchart of the RS232 reception of the dSPACE© with the Simulink model

-22-

6.3 Data transferring from three magnetic encoders

6.3.1 Daisy Chain mode

The current hand has three fingers. Each finger has a magnetic encoder. In order to obtain
rotational angle of the motor in each finger, the implementation of the reception from three
magnetic encoders is necessary.

AS5040 has “Daisy Chain Mode”. By using this mode, the serial reception from three
magnetic encoders with one data line becomes feasible, and the data is transferred one after
the other. How to connect AS5040 and MCU (PIC16F690) is shown in Figure 6.15. The
schematic of data transfer is shown in Figure 6.16.

Beside the implementation of the Daisy Chain Mode, It is also necessary to re-design the

circuit board for the AS5040, because the previous one was made only for PWM

transmission.
CSn CSn L CSn L cSn
CLK CLK e CLK e CLK
] ale} PROG [————1-| DO PROG ———1—{ DO PROG
II‘IF IInF ZnD
GND GND
MCU AS5040 AS5040 AS5040

Figure 6.15 How to connect AS5040 and MCU

CSn
lC1.KFE TCLKR
—
| i] % 0] [T 2] 3
CLK |
it |
004(7 Do |os] 07|06 D5| 0s| D3] D2] 1] D0]oce]cor| um e | Mag | Sen ﬂm o7
- - F
too atie oo vai Angular Position Data Status Bits Angular Position Data
12 Device 2" Device

Figure 6.16 Schematic of Daisy Chain mode

-23-

6.3.2 Datatransferring in correct order

The angular position data from one encoder is sent to dSPACE© in two 8-bit data. In case of
the reception from three encoders, six 8-bit data is sent from encoder to ASPACE®©. Data is
transferred one after the other, so the confusion of the receiving order may occur. To solve
this problem, sending control byte such as “00000000” at first is one option. However, this
control byte has to be unique and have not to be the same value as any other data bytes. So
it was necessary to make the flag-exclusive bit in each byte. So, a flag bit which indicate the
order of the data was attached to each byte.

Figure 6.17 describes how the flag bit is attached to each data. First, the bits of the data are
shifted rightward by a bit, then the flag is attached to the 7t bit of the data. The lapping
bits which had been 0th bit before bit shifting are collected and put into “Obit_of_each_data”
variable. Therefore, 7 bytes are transmitted in each cycle.

As a first step of the reception sequence at ASPACEQ©, the data which has “1” as the flag bit
is searched for. After the data with “1” flag has been received, following 6 bytes are received.
Confusion of the reception order was avoided by using this flag bit.

After dASPACEO has received all the 7 bytes from PIC, the data is decoded.

Encoder1_upper|1|0|0|1|1|1|0|1| Encoder1_lower|1|0|1|0|0|0|0|1|
Encoder2_upper |0|0|0|1|1|0|0|0| EncoderQ_Iower|0|0|1|0|0|0|0|1|
Encoder3_upper |0|1|1|1|1|1|1|1| Encoder3_lower|1|1|1|0|0|0|0|0|

- Shift bits of each data rightward by a bit.

- 0 hit of each data are collected and putinto
"Obit_of_each_data"

- The flag bit is attached to each data. Only the flag bit

v of "Encoder1_upper” is 1", and the others are '0'".

Encodert_upper [W] 1 [0 Jo [1 1] 1]0] 7 Encodert lower [l 1 [0 1o oo o |7

Encoder2_upper 0 | 0 | 0 | 1 | 1 | 0 | 0 | ;J Encoder2_lower - 0 | 0 I 1 |MO | 0 | 1

Encoder3_upper 0 | 1 | il | 1 | 1 | 1 | 1 |

, >
S
&

"N\encoder3_lower

Flag_bit

Obit_of_each_data . 0 |‘1' [1Jo]1]1]0

Transmission of these 7 bytes is one cycle

Figure 6.17 Flag attachment at PIC16F690

-24-

6.3.3 Implementation into the KTHand

In order to implement this daisy chain system into KTHand, new circuit board for AS5040
was designed. The schematic diagram of the circuit is shown in Figure 6.18, and its foot
print is shown in Figure 6.19 and Figure 6.20.

Made circuit board is shown in Figure 6.21, and the boards embedded into the hand are

shown in Figure 6.22, Figure 6.23 and Figure 6.24.

reen. | | 00

UJ

MagINCn® - © * VDD5SV

MagDECn- - - ¥VDD3V3

RACTSHEE: = dwe NG . :
B_Dir=V- - - - - NCZ AOPF

HC1 - - - - "PWM LSB[— oo
Index W - - - TCSn

VSS - T c v e o CLK | e o e e
Prog - - - - - - DO

AS5040

Figure 6.19 circuit board top Figure 6.20 circuit board bottom

-25-

Figure 6.21 AS5040 circuit board

(N

Figure 6.22 Encoder for fingerl

Figure 6.24 Encoder for Thumb

-26-

6.4 Performance of the system

6.4.1 The dead band

It is known that there is a dead band of the angular position in using PWM signal (below
0.05 and above 0.96 duty cycle). In the dead band, the data fluctuates and jumps, so the
reliability of the received data is extremely low.

Basically, when the serial interface is used, there cannot be any dead band. To confirm
this, the author conducted an experiment to acquire the data near 0 degree, 180 degree and
360 degree. The data acquisition was conducted for 15 second for each angular position. The
result is shown in Figure 6.25. The angular position data is represented by integer of 0-
1024, because they are transferred in 10 bits. The mean and the standard deviation at each
angle were shown in Table 6.2Table 6.2. Standard deviation of “O degree” and “359 degree”

are as small as that of “174 degree”. So, the data fluctuation in dead band was avoided.

6.4.2 The sampling time

The data is transferred from AS5040 to ASPACE© through PIC. In using PWM signal, the
signal period is 1025 ps. Therefore, the sampling frequency of the dSPACE© was 975.6 =
1000 Hz.

As discussed in Chapter 2, the sampling time should be the same in using serial interface
than in using PWM.

The bottleneck of the sampling time is PIC16F690. In order to estimate the sampling time,
the assembly code generated by the CC5X compiler during the compiling of the C codes was
used. The length of the time which it takes each operation of the assembly language is
already known. The total time can be estimated by summing up the time of all the
operations in the codes.

TI—IZRIENEONYD ¥ A, shows the estimated time and measured time in using 8
MHz as an OSC of the PIC16F690 and 55556 baud as the baud rate. The measurement of
the time was conducted by using oscilloscope. In the table the times for each function of the
C codes are shown, and the whole time 1s also shown.

In the column of “time for one AS5040”, the error of the estimated time is 15.8 %. So, the
estimation is valid.

In the column of “time for three AS5040”, the estimated time is 2098 us, therefore the
sampling frequency will be 477 Hz. It is just half of the frequency in using PWM (1000 Hz).
Actual time was also 2000 ms. Actually, the hand has worked correctly with this sampling

-27 -

frequency. However the improvement of the sampling frequency has remained as a

futurework.

1000

900 -

800

400 —

Angular position data (0-1023)

300

— 358 degy
T dey
200 - 0 deg I
100 |- i
D] 1
0 5 10 15
Tirne [s]
Figure 6.25 Check of the dead band
Table 6.2 Mean and Standard Deviation of each angle
“0 degree” “174 degree” “359 degree”
Number of sample 28419 58592 58811
1.231 496.0 1021
Mean
(0.4327 degree) (174.4 degree) (358.9 degree)
0.4449 0.1938 0.1699

Standard Deviation

(0.1564 degree)

(0.06813 degree)

(0.05973 degree)

-28 -

Table 6.3 Estimation and measurement of the sampling time

“main”

(in “while” “serial_re | “serial_tran_rs232” | time forone | time for three
in “while
loop) c_mag” (baud rate 55556) AS5040 AS5040

oop
Estimated time (us) 16.5 183 360 950 2098
Measured time (us) 800 2000

-29-

7 Conclusions

The serial interface between magnetic encoder (AS5040) and dSPACE© was implemented.
The micro controller (PIC16F690) was used as a relay component and put in between
AS5040 and dSPACE®©. The interface between magnetic encoder and micro controller is
synchronous serial interface (SSI), and the one between micro controller and dSPACEQ is
asynchronous serial interface (RS232). The data from three encoders are transferred one
after the other via “daisy chain mode”.

By the implementation of this serial interface, the dead band has been vanished, and the

sampling frequency has been 500 Hz.

-30-

8 Appendix

8.1.1 Whole C code for PIC16F690

/* Pins connection

pin 1 ‘Vdd

pin 2 :NONE

pin 3 :NONE

pin 4 :NONE

pin 5 (PORTC.5) :Clock for AS5040

pin 6 :NONE

pin 7 :NONE

pin 8 (PORTC.6) :CSn for AS5040

pin 9 :NONE

pin 10 :Data for dSPACE (RS232)
pin 11 :NONE

pin 12 (PORTB.5) :Data from AS5040 (SSI)
pin 13 :NONE

pin 14 ‘NONE

pin 15 :NONE

pin 16 :NONE

pin 17 :NONE

pin 18 :NONE

pin 19 :NONE

pin 20 :GND

*/

#define NUM_ENC 3 //Number of fingers. Up to 3 fingers. For more, add new variable "zerobit_of_each_data_2"

PORTC.5=1;
PORTC.5=0;

i
void csn0)f
PORTC.6 = 1;

-31-

PORTC.6 = 0;
}
[*"serial_rec_mag" is a function to receive angular position data from a magnetic encoder (AS5040) by using
synchronous serial interface (SSI).
"char* serial_upper": the higher 8 bits of the data from AS5040.
"char* serial lower": the lower 8 bits of the data from AS5040.

"int fing_num": the ordering number of the finger whose angular position data is treated now.

*/
PORTC.6 =0;
PORTC.5 =0;
clockO);

/lreceive first bit. put received bit into "serial_upper".
if(PORTB.5 == 1){(*serial_upper) = ((*serial_upper)+1) << 1;}
else {*serial_upper = (*serial_upper) << 1;

}

/Ireception of first bit end.

clock();

/Ireceive second bit.

if(PORTB.5 == 1){*serial_upper = ((*serial_upper)+1) << 1;}
else {*serial_upper = (*serial_upper) << 1;

¥

/lreception of second bit end.

clock(;

/Ireceive third bit.

if(PORTB.5 == 1){*serial_upper = ((*serial_upper)+1) << 1;}
else {*serial_upper = (*serial_upper) << 1;

¥

/lreception of third bit end.

clock();

/Ireceive 4th bit.

if(PORTB.5 == 1){*serial_upper = ((*serial_upper)+1) << 1;}

else {*serial_upper = (*serial_upper) << 1;

-32-

}

/lreception of 4th bit end.

clock();

IIreceive 5th bit.

if(PORTB.5 == 1){*serial_upper= ((*serial_upper)+1) << 1;}
else {*serial_upper = (*serial_upper) << 1;

}

/lreception of 5th bit end.

clock();

/lreceive 6th bit.

if(PORTB.5 == 1){*serial_upper = ((*serial_upper)+1) << 1;}
else {*serial_upper = (*serial_upper) << 1;

}

/Ireceive 6th bit end.

clock(;

/Ireceive Tth bit.

if(PORTB.5 == 1{*serial_upper = ((*serial_upper)+1) << 1;}
else {*serial_upper = (*serial_upper) << 1;

}

/lreception of 7th bit end.

clock();

lIreceive 8th bit.

if(PORTB.5 == 1)*serial_upper = ((*serial_upper)+1);
/Ireception of 8th bit end.

clock();

/lreceive 9th bit. And put it into "serial_lower".

if(PORTB.5 == 1){*serial_lower = ((*serial_lower)+1) << 1;}
else {*serial lower = (*serial lower) << 1;

}

/lreception of 9th bit end.

clock(;

/Ireceive 10th bit.

if(PORTB.5 == 1){*serial_lower = ((*serial_lower)+1) << 1;}

-33-

else {*serial_lower = (*serial_lower) << 1;

}

/Ireception of 10th bit end.

clock();

/lreceive 11th bit.

if(PORTB.5 == 1){*serial_lower = (*serial_lower)+1) << 1;}
else {*serial_lower = (*serial_lower) << 1;

}

/Ireception of 11th bit end.

clock();

/Ireceive 12th bit.

if(PORTB.5 ==){*serial_lower = ((*serial_lower)+1) << 1;}
else {*serial_lower = (*serial_lower) << 1;

}

/lreception of 12th bit end.

clock();

/Ireceive 13th bit.

if(PORTB.5 == 1){*serial_lower = ((*serial_lower)+1) << 13}
else {*serial_lower = (*serial_lower) << 1;

¥

/lreception of 13th bit end.

clock(;

/Ireceive 14th bit.

if(PORTB.5 == 1){*serial_lower = ((*serial_lower)+1) << 1;}
else {*serial_lower = (*serial_lower) << 1;

¥

/lreception of 14th bit end.

clock(;

/Ireceive 15th bit.

if(PORTB.5 == 1){*serial_lower = ((*serial_lower)+1) << 1;}
else {*serial lower = (*serial lower) << 1;

}

/lreception of 15th bit end.

-34-

PORTC.5=1;

PORTC.5=1;

/lreceive last bit.

if(PORTB.5 == 1)*serial_lower = ((*serial_lower)+1);
/lreception of last bit end.

iffing_num != NUM_ENC -D){ //treating final clock

PORTC.5 =0;

PORTC.5=1;
telsef

csn(); //This csn signal means the end of the reception.
)

¥
/*"attach_header" is a function to attach a flag at the 7th bit of each data.
"char* serial_upper": the higher 8 bits of the data from AS5040.
"char* serial lower": the lower 8 bits of the data from AS5040.
"char* zerobit_of_each_data": the Oth bit of each data before data shifting in "attach_header" function.
"int fing_num": the ordering number of the finger whose angular position data is treated now.
*/
void attach_header(char* serial upper, char* serial lower, char* zerobit_of_cach_data, it fing num){
//Shift bits of each data rightward by a bit. Then, put lapped bit by shifting into "zerobit_of_each_data"
variable.
if((*serial_upper & 0b00000001) == 0b00000001){
*zerobit_of each_data = *zerobit_of each_data << 1;
*zerobit_of each_data = *zerobit_of each_data + 0b00000001;
}else {
*zerobit_of each_data = *zerobit_of each_data << 1;
¥
if((*serial_lower & 0b00000001) == 0b00000001){
*zerobit_of each_data = *zerobit_of each_data << 1;
*zerobit_of each_data = *zerobit_of each_data + 0b00000001;
}else {

*zerobit_of_each_data = *zerobit_of_each_data << 1;

-35-

*serial_upper = *serial_upper >> 1;
*serial_lower = *serial_lower >> 1;
//Shifting end.

if(fing_num == 0){

*serial_upper = *serial_upper + 0b10000000;//the first byte’s flag is set "1~

/* "serial_tran_rs232" is a function to transmit angular position data to dSPACE.
"char* serial_upper": the higher 8 bits of the data from AS5040.
"char* serial lower": the lower 8 bits of the data from AS5040.
"char zerobit_of_each_data": the Oth bit of each data before data shifting in "attach_header" function.
"int fing_num": the ordering number of the finger whose angular position data is treated now.
*/
void serial_tran xs232(char* serial_upper, char* serial lower, char zerobit_of_cach_data, int fing num){
int 1;
/MInitialize the asynchronous serial interface.
if(fing_num == 0){
/Iset baud rate.
BRG16 = 0;
BRGH =1;
SPBRGH = 0;
SPBRG = 8;
SYNC = 0;
/Iset baud rate end.
SPEN =1;
TXEN = 1; // This means the start of the asynchronous serial transmisssion.
)
//Write transmitting data into TXREG register.
TXREG = *serial_upper;
TXREG = *serial_lower;
//Write transmitting data into TXREG register end.

/IWait until transmission has finished

-36 -

while(D1
if(TRMT==0){

while(D1
if(TRMT==1){
break;
}

}

break;

}

//Waiting until transmission has finished, end.

if(fing_num == (NUM_ENC-D){
TXREG = zerobit_of _each_data; // At last, "zerobit_of_each_data" is transmitted.
/I Wait until the transmission has finished.
while(1){
if(TRMT==0){
while(1){
if(TRMT==1){
break;
H

break;

}
//Waiting end.

TXEN = 0; / This means the stop of the asynchronous serial transmission.

char serial_upper[NUM_ENC];

char serial_lower[NUM_ENC];

-37 -

char zerobit_of_each_data; //the gathered value of "0 bit" of each variable.

int i;

/MInitial pin configuration. ‘0" means corresponding pin is for output, and *1” means corresponding pin
is for input.

TRISC = 0b00000000;

TRISB = 0b00100000;

/Mnitial pin configuration end.

//Set AN1-11 pins digital I/0O.

ANSEL = 0;

ANSELH = 0; //set AN1-11 pins to degital I/O. As a default configuration, these pins are set to analog
1/0. Without this setting, serial communication will never be available.

//[Set AN1-11 pins digital I/O end.

/ISet clock frequency 8 MHz

OSCCON.6 =1;
OSCCON.5=1;
OSCCON.4=1;
OSCCON.0 =1;

//Set clock frequency 8 MHz end

PORTC.5 = 1; //set "clock" for AS5040 HIGH

while (1)1
/*initialization of the variables*/
for(i=0; i<NUM_ENC; i++){
serial_upperli]l = 0;
serial_lowerli] = 0;
}
zerobit_of each_data = 0;

/*1initialization of the variables end*/

for(i=0; i<NUM_ENC:; i++){
serial_rec_mag(&serial_upperli] , &serial_lowerl[il, i); //receive data from magnetic

encoder by using synchronos serial interface.

-38 -

¥
for(i=0; i<NUM_ENC; i++){
attach_header(&serial_upperlil, &serial_lowerlil, &zerobit_of each_data, i); / header
is attached to avoid order confusion of data.
¥
for(i=0; i<NUM_ENC; i++){
serial_tran_rs232(&serial_upperl[il, &serial_lowerl[il, zerobit_of each_data, i); //send
data to dSPACE by using RS232 interface.
}

8.1.2 Simulink model for the serial reception at ASPACE®

The whole Simulink model is shown in Figure 8.1. Each cycle of the angular position data
from three magnetic encoders contains 7 bytes. The transferring of each byte is done one
after the other. So, the confusion of receiving order may occur. Therefore, the detection of
the first byte of each cycle is necessary.

That is why the flag bit was attached to the 7th bit of each byte at PIC16F690. At ASPACEO,
this flag bit is checked at first. After finding a byte with the flag bit of “1°, the following 6
bytes are received. Then the data is decoded, therefore the flag bit is extracted and the data

1s converted into angular position data.

8.1.3 Schematic diagram of electrical circuit

Schematic diagram is shown in Figure 8.2. Three encoders connected by in daisy chain
order. The angular position data is transferred one after the other. The cable used to
connect encoders were FFC?. Because of this the space saving in the hand has been

achieved.

9 Flexible Flat Cable

-39-

Serial Setup
DS1104SER_SETUP

Receive data from PIC (DS11045ER_RX)
- Baud Rate : 55556 baud
«Databit: 8
- Stop bit: 1
= Parity : NO
= Numnber of Bytes
which are received st ane time : 7

the previcus
7 bytes

Selector 14

Constant12

Check "flag bit™

If Action
Subsystem14

hoc

Selector1d

Selector 12

Selector10

128

Constantd

128

Constant?

s

Check "flag bit™1

ul
sl =
@

Check “flag bt"2

2w

Check "flag bit"4

If Action
Subsystem13

It Action
Subsystemi2

Merge -

If Action :
Subsystem1d >

Latest 14 bytes

128 — P u

Constants

Check "flag b5

Constant2

Check “flag bit"6

[yevur24 I 1 Wy =22
— Cy=0Ou=<<t | > uintte Cy=Qu=<<2 [
| Ey=Eu EysEu |)
Bit shifting of Data Type Conversion HigheeBtits. > .
higher Byte of Snger! | ™
g M R
Wy =\t 24 Bitwise Wy =W 26 Combine Product
P Oy=Queet L AND | Qy=0Qu>>6 — data
__Ey=Eu | o | Ey=Bu |
Bit shifting of Data Type Mask for lower 2685 Lower2bits F
lowaer byte of finger! Conversion 11024
> - - wemrm—— Constant
Wy =24 o |_ _S.S,u.m
Qy=Que<1 >, P uintis P Oy=Ou<<2
| eyeen | i =] Ueem | —
Bit shifting of Data Type Conversion2 HigherBhits 1 s r
higher byte of Enger2 I Y-
[Ww=wrz | Bitwise Vy=\u 28 | | Combine Producti
—— P Qy=Qu<<1 L oo P uimis AND | Qy=Qussg - dstal
|__Ey=Eu A x| Ey=Bu | [
Bit shifting of Data Type Mask for lower 2bits! Lower2bits! 111024
lower byte of finger2 Canversiond o —
W=Vt 2 I V=Wt 202
P Oy=Que<i [~ —1— P wintlg — Oy=Quee2
L_Ey=Eu L Ey=Bu || —
Bit shifting of Data Type Conversions Highenfibesz P * »
higher byte of thurnb '_ b 4 _
V=2 I Biwise X Combine Procuct?
P OysQu<<t | > uimie AND | a2
L_Ey=Eu | ‘ 0xCO_| Ey=Eu
Bit shifting of Data Type Mask for lower 2bits2 Lowsr2bits? 11024
lewer byte of thumb Conversiond L
Caonstantd
| wew Vet | [Wewur 2z | [wewet 2 Vyw V2 |y =vur 25
Bit shifing | Oy =Ou Oy=0u»>1 Oy=0u>>2 Qy=0u>=3 Oy=0us>4 |Oy=ous=5
| Ey=Eu Ey=Eu Ey=Eu Ey=Eu Ey=Eu Ey=Eu
ST i i ﬂ i ﬂ
aitwise | B0152 | [Bitwize Bitwse [Bitwise | Bawise | Bitwise
AND| AND AND AND AND AND AND
[2 | ok] 10 020
zerobit

» 1)
Fingart

3
Finger3

Figure 8.1 Simulink model

-40-

Cannection 1

sdz8%
GEssssl
vee FPFFFF
_ _2 I
o 3 _
—| BAS/TLEXL/O3CL/ELKIN RAO/AN0/ ELTN%/ 1CIPINT/ ULEGN) [— AV
—| RAdsABz; 03CL/ ELROUT RAL/ANL/ CLEINO - /Wre £/ ICSPOLX [~ GND
—| BA3/MCLES AL/ KN/ TOCKL/ THT/ CLOUT [—
L—| ResyccrLp REO/ AN/ ELITNe [—
— BeascrouT/PLE RCL/ANSCLLIN- —
—| RO3/AN1/CL2IR?-/PLE BCL/ A6/ CL1 TNEINE - /PID [
L meesamsss RBA/AMLY/ SD1/ 3D [—
—| BE7/ANd/ 300 ES ANLL/RX/DT [— 1 00k0
BBV CX FBE/ 30K/ ICL — >
PIC1EFE30
— 1
10k0
N3304 A_Vﬂu
GND dSPACE_D-sub3{Male)
\....IIIIIIIIIIIIIII].....I B e i ey P R
s s
- N\ . nnection
Connection 1 \] Connection 2 \ .__\ Eonnection.d
- - 13 Lo — -
LEERLF i EEPLE P EERLE
= 2] I B3eeee] 1 = [}
_- R xw 1 1 _w ﬁ 1 _- . ..W
GND 1] AVozo I] GND
[|
[|
[]
R7 "3 I 1 R4 3 [R’ R2
ki 0 c7 1 I L] i ca 1 wa | |we ci
[_ 1 1 [_ [[_
—
_.m_uwhnn Mw dewpr._muclu;n: 0.5pF “ I LED_red .N/My Wwﬁﬂlﬂg 0.94F “ 1 rmcw_unn_ M‘M Mwa“..._leu;n: 0.4pF
oy I o I 5's3
cs = c2
j S . VIosY [~ 1 1 W MagIhtn voosy I L haginen VIosy [
HaglEtn VDIV Ill_ 1 Haottn VEDY |||_ 1 — HaghEEn Lo Ill_
— ALz nes - GND 1 — & LsEv ui - GND I — alsE v w - GND
— B Dir % wee — |10pF 1 — EDir W nee — [10uF 1 — B Dir W wte [~ |10pF
— w1 LB [— 1 — weL FOM_L3E |] — weL FM_L3B
GND | | Index 8 [1 GND | | Indexw tin 1 — Tndex [
RS o CLX 14 — RS -] Vi CLX 1 — o B H X —
Prog DO 1 Prog DO 1 Prog DO
1000 cs 255080 ! 1000 I_l ol 55040 ! OHD £ 7/OND 255040
I_ISum 1 1 ldl_e_u_" |
1 1 I
Lono | [Lrono I " Lono | [Lrono 1
(| |
| 1 | 1
[3| I | [2] I |
T r
v8easy ! R £
" 1 g /
Connection 2 P Cannection 3 \
Y ~
Finger2 Thumhb

Finger 1

Figure 8.2 Schematic diagram of the electrical circuit

8.1.4 How to use PIC
Programming
1, Compile the code.
- “Project” — “Build”
2, Confirm the compile finished successfully.
3, Stop supplying power to PIC.
- “Programmer” — “Hold in Reset”
4, Send compiled code to PIC.
- “Programmer” — “Program”
5, Supply power to PIC

- “Programmer” — “Release from Reset”

Supplying power to PIC(Through PICkit2)
1, Open the “MPLAB IDE” software.
2, Supply power to PIC

- “Programmer” — “Release from Reset”

MPLAB IDE tutorial
http://www.microchip.com/stellent/ideplg?IdcService=SS GET PAGE&nodeld=1406&dDoc
Name=en019469&redirects=mplab
C compiler “CC5X”
http://www.bknd.com/cc5x/
PIC16F690(Data Sheet)
http://ww1.microchip.com/downloads/en/DeviceDoc/41262C.pdf

-42 -

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&redirects=mplab
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&redirects=mplab
http://www.bknd.com/cc5x/
http://ww1.microchip.com/downloads/en/DeviceDoc/41262C.pdf

9 Reference
[1] Matei Ciocarlie, Corey Goldfeder, Peter Allen, “Dexterous Grasping via
Figengrasps’' A Low-dimensional Approach to a High-complexity Problem”, 2007.
[2] Specification of the DuraForm® PA plastic, http://www.nrri.umn.edu/NLTC/DS-
DuraForm PA plastic 1106.pdf-
[3] Siim Viilup, “ROBOT HAND REDESIGN-Fingertip force sensing implementation

and assembling simplification”, 2010, Student research project, KTH Machine
Design.

[4] ERALP KARAKULLUKCU, “Synchronous Serial Interface Of AS5040 Magnetic
FEncoder”, 2010, Student research project, KT'H Machine Design.

[6] AS5040 datasheet, http:/pdfl.alldatasheet.com/datasheet-
pdf/view/216354/AMSCO/AS5040.html

[6] dSPACE®, http://www.dspaceinc.com/en/inc/home.cfm?

[7] PIC16F690 datasheet,
http://ww1.microchip.com/downloads/en/DeviceDoc/41262C.pdf

[8] Pin configuration of “RS232”, http://www.lammertbies.nl/comm/cable/RS-232.html

-43-

http://www.nrri.umn.edu/NLTC/DS-DuraForm_PA_plastic_1106.pdf-
http://www.nrri.umn.edu/NLTC/DS-DuraForm_PA_plastic_1106.pdf-
http://pdf1.alldatasheet.com/datasheet-pdf/view/216354/AMSCO/AS5040.html
http://pdf1.alldatasheet.com/datasheet-pdf/view/216354/AMSCO/AS5040.html
http://www.dspaceinc.com/en/inc/home.cfm
http://ww1.microchip.com/downloads/en/DeviceDoc/41262C.pdf
http://www.lammertbies.nl/comm/cable/RS-232.html

