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Kinematics and dynamics of some selected 
two-wheeled mobile robots 

S. NOGA 
Rzeszów University of Technology, ul. Wincentego Pola 2, 35-959 Rzeszów 

In this paper, the problem of the kinematics and dynamics of two constructional conceptions of a two-
wheeled mobile robot is considered. The wheeled mobile robot subjected to nonholonomic constraints 
moves over the inclined plane. Its trajectory consisting of the straight line and the curvilinear path 
described by the sinusoidal function is analyzed. The kinematic equations for arbitrarily chosen point of 
the system are derived by using classical equations of mechanics. Kinematic and dynamic parameters of 
motion from the solution of inverse kinematic and dynamic problem are obtained. Simulation results are 
presented to illustrate the efficiency of the approach. 
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1. Introduction 

The problems concerning kinematics, dynamics and control of wheeled mobile ro-
bots gain more and more attention. This results mainly from the fact that wheeled mo-
bile robots are very often used in industry, especially where the contribution of an op-
erator to some technological processes is not recommended. The mobile robot under 
investigation is a system which rolls on conventional wheels and is subjected to non-
holonomic constrains. Fundamental theory of nonholonomic systems is developed in  
a number of monographs by, for example, Gutowski [1], Nejmark and Fufajev [2]. 
The kinematic modelling of mobile robots is investigated by many researchers. The 
problem of the kinematics of a two-wheeled mobile robot is analyzed in [3–6, 8–10]. 
In [6, 8, 9], a natural orthogonal complement is applied to a wheeled mobile robot. 
The problem of motion of the mobile robot along the curvilinear trajectory is dis-
cussed in the paper [10], excluding the kinematics of bracket and caster wheel. In pa-
pers [3, 4], the kinematics of this system using classical equations of mechanics is de-
scribed, including the kinematics of bracket and caster wheel. The problem of the dy-
namics of a mobile robot is considered in papers [4, 6, 8, 11]. In papers [6, 8],  
a natural orthogonal complement is applied to a wheeled mobile robot. The problem of 
neural modelling of the mobile robot is discussed in paper [11], excluding the dynam-
ics of a bracket and a caster wheel. In paper [4], the dynamics of this system using 
classical equations of mechanics is described. This paper continues the recent author’s 
investigations concerning the kinematics and dynamics of mobile robots [3–5, 10, 11]. 
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The present paper is organized as follows. Section two describes the mobile robot 
system under study. In sections three and four, the kinematics of a two-wheeled mo-
bile robot is studied. In section five, the dynamics of the mobile robot is analyzed. 
Section six presents some simulation results, and section seven gives some concluding 
remarks. 

2. Model of the system 

An assumed model of the mobile robot is presented in Figure 1. The basic units of 
the model are as follows: frame 4, driving and steering wheels 1 and 2, and bracket 
with caster wheel 3. Wheels 1 and 2, mounted on the shafts, are driven separately by 
two electric motors. Wheels rotate about their axes, whose positions are invariable in 
relation to the frame. The third wheel is mounted on a rotary bracket. In the modelling 
of the mobile robot system, the following assumptions are adopted: 

• There is no slipping between the wheel and the floor, i.e., rolling contact is main-
tained. 

• The vehicle cannot move sideways to maintain the nonholonomic constraint. 
• The motion of the mobile robot is confined to the plane xy. 
Paper [7] presents the specifications and controls of the mobile robot shown below.  
The coordinates 1α , 2α , and 3α  are the angles of rotation of wheels 1, 2, and 3, re-

spectively. The angle of rotation of the formative wheel z1  is denoted by α . The an-
gle β  is the angle of instantaneous angular displacement of frame 4.  
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Fig. 1. The two-wheeled mobile robot 

The angle ψ  is the angle between the longitudinal symmetry axis of the chassis 

and the bracket. The following elements: l, 1l , 2l , 3l , 4l  are the lengths, and 1r , 2r , 
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3r  are the radii defined in Figure 1. The radius r  is the radius of the formative wheel 
z1 . The point A is a characteristic point of the frame and the point of intersection of 

the frame longitudinal symmetry axis with the axis of rotation of wheels 1 and 2. The 
points B, C, and F are the centres of masses of wheels 1, 2, and 3, respectively. The 
point S is the centre of mass of chassis 4. The point D is the connection point of 
bracket 3 and frame 4. 

The position and orientation of the mobile robot are described by seven coordi-
nates: Ax , Ay – the Cartesian coordinates of the point A; 1α , 2α , 3α , β , ψ – the 
angle coordinates.  

The mobile robot constitutes a nonholonomic planar system. If no slipping and no 
sideway motions are assumed, the mobile robot has two degrees of freedom only. One 
can choose the angles of driving wheels as generalized coordinates for the conven-
ience of control design. The objective of the kinematic analysis of the mobile robot is 
to derive the kinematic parameters of the system in terms of generalized coordinates. 

In the present paper, two conceptions of the constructional schemes of this kind of 
robot are analyzed. When the centre S of mass is situated behind the axis of wheels  
1 and 2 (see Figure 2a), we deal with the so-called dragging system [4]. When the 
point S is situated before the axis of wheels 1 and 2 (see Figure 2b), we deal with the 
so-called propelling system [4].  
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Fig. 2. Schematic diagrams of the two-wheeled mobile robot 

3. Kinematics of the dragging system 

The robot under consideration is moved on the plane. The chassis and the bracket 
with the caster wheel undergo planar motion. The velocity distribution of characteris-
tic points of the system is displayed in Figure 3.  

The point E is an instantaneous centre of chassis 4, and the point G is the instanta-
neous centre of the bracket.  

According to the nonholonomic constraints and nonslipping condition, the robot 
has to move in the direction of the symmetry axis, i.e.: 
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,sin,cos ββ AAAA vyvx == &&  (1) 

where Av  is the velocity of the point A. Likewise, the bracket has to move in the direc-
tion of the symmetry axis, i.e.: 

),sin(,)cos( ψβψβ −=−= FFFF vyvx &&  (2) 

where Fv  is the velocity of the point F (see Figures 1 and 3), and (xF, yF) are the co-
ordinates of the point F given directly by: 

.)sin(sin),cos(cos 44 ψββψββ −−−=−−−= llyyllxx AFAF  (3) 
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Fig. 3. The velocity distribution of the system 

From Equations (1) – (3), the angular velocity of the bracket with respect to the 
chassis is determined [4]: 
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Taking into account kinematic equations for the points B, C, and F, the angular veloci-
ties of wheels 1, 2, and 3 are given by [4]: 
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Taking into account the velocity distribution for the points A, B, and C (Figure 3) and 
Equation (5), the angular velocity of formative wheel z1  is expressed by: 

).(
2
1

21 ααα +=  (6) 

4. Kinematics of the propelling system 

The other system is the so-called propelling system. Likewise, the chassis and the 
bracket with the caster wheel undergo planar motion. The velocity distribution of the 
characteristic points of the system is shown in Figure 4. 
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Fig. 4. The velocity distribution of the system 

The corresponding formulae describing the kinematics of propelling system are as 
follows [4]: 

),sin(),cos( ψβψβ +=+= FFFF vyvx &&  (7) 

),sin(sin),cos(cos 44 ψββψββ +−+=+−+= llyyllxx AFAF  (8) 
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5. Dynamics of the mobile robot 

In this section, the dynamics of constructional schemes is described based on clas-
sical equations of mechanics; the dynamics of the bracket and the caster wheel is ex-
cluded. The motion of the robot is considered in the plane xy inclined to the horizon-

tal plane 00yx , where γ  is the angle of inclination of the motion plane (Figure 5). 
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Fig. 5. The motion plane of the system 

The mathematical model of the mobile robot described by n  generalized coordi-
nates grouped together in the vector q  and subjected to ns <  nonholonomic con-
straints is derived. The formulation of the model of interest is based on Lagrange’s 
equations for constrained mechanical systems. 

Lagrange’s equations of the system at hand have the form [1, 2, 6]: 
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where ( )qqEE &,=  is the kinetic energy of the system, V  is the Newtonian potential of 
the system, Q  is the vector of generalized forces, J(q) is the matrix associated with 

the constraints, q  is the vector of generalized coordinates, q&  is the vector of general-
ized velocities, λ  is the vector of the Lagrange multipliers, and the superscript T is the 
transpose of a matrix operator. 

The matrix J(q) is obtained from the equations of kinematic constraints in terms of 
generalized velocities, i.e., [1, 2, 6]: 

.0)( =qqJ &  (12) 
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5.1. Dynamics of the dragging system 

The position and orientation of the mobile robot excluding the bracket with the 
caster wheel are described by the following vector of generalized coordinates: 

[ ] .T
AA αβ,,y,xq =  (13) 

As is mentioned earlier, the mobile robot has two degrees of freedom only. There are 
two nonholonomic constraints. From Equation (12) the matrix ( )qJ  is given by: 

( ) ,
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where 21 rrr == . 
It is shown that the kinetic energy of the dragging system takes the form [3, 5]: 
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where 1m , 2m , 4m  are the masses of members of the system, 1xI , 2xI , 1zI , 2zI , 4zI  

are the inertia moments of movable members of the system, rlh 11 =  is a nondimen-
sional parameter. 

Gravitation potential of the dragging system is: 

( ) ( )[ ] ,coscossinsin 42124421 γβγγ ghmrmmlgmxgmmmV SA +++−++=  (16) 

where Sh  is the distance between the centre of inertia and the motion plane of the ro-
bot, g is the acceleration due to gravity.  

The vector of unconstrained generalized forces is given by: 
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where 1M , 2M  are the driving torques, 1N , 2N  are the axial forces acting on the 

wheels, 1f , 2f  are the coefficients of rolling friction. 
When the robot motion over the inclined plane is realized, the value of the resisting 

force depends on the robot orientation on the motion planexy. The axial forces are ex-
pressed by [4]: 
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where ( )gmmmN 4210 5.0 ++= . 
Taking into account Equations (14)–(17), Lagrange’s equations (11) for this model 

are as follows: 
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where ,1λ 2λ  are the Lagrange multipliers.  

5.2. Dynamics of the propelling system 

Likewise, the position and orientation of the mobile robot are described by the vec-
tor of generalized coordinates: 

[ ]T
AA yxq αβ ,,,= . (20) 

The kinetic energy of the propelling system takes the form: 
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Gravitation potential for this system is expressed by: 

γβγγ cos])[(cossinsin)( 42124421 ghmrmmlgmxgmmmV SA ++++++= . (22) 

The vector of unconstrained generalized forces is given by: 
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where the resisting forces are: 
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Lagrange’s equations (11) for this case are written in the form: 

.

cossin
2

2

sinsin222

cos2sinsin2cos

sin

sin2coscos2sin

221121

421
2

24
2

1241

24244
2
111

2
24

2
11

41
2

244124

1421

41
2

244124

fNfNMM

βγrgmmmβrlmαrI
r

mm

hfNfNMM

βγlgmβαrlmβIhIIlmlm

λββαrmmββlmβαrmmββlm

λγgmmm

ββαrmmββlmβαrmmββlm

z

zzx

−−+=

+++−






 ++

−++−=

−+++++

=++−++

=+++

+−−++−

)(

,)(

)(

,)()(

,)(

)()(

1221121

2

&&&

&&&&

&&&&&&&

&&&&&&&

 (25) 



 
 
 

S. NOGA 

 
64

6. Simulation 

In this section, simulation results of inverse kinematic and dynamic problem using 
the systems suggested earlier are presented. Computer simulation makes it possible to 
find the solution for the system of Equations (4), (5), (9), (10), (19) and (25), and then 
to determine the kinematic and dynamic parameters of motion being of our interest. In 
the first step, the problem of inverse kinematics is realized. Considering the problem 
of inverse dynamics, we obtain the required time histories of motion parameters as  
a result of solving inverse kinematics problem. The scheme of executed process is 
shown in Figure 6. 

 
Trajectory Inverse kinematics Parameters Inverse dynamics Parameters 

 Fig. 6. The scheme of the problem of inverse dynamics 

It is assumed that the point H  (the dragging system) or the point 0H  (the propel-
ling system) moves along the trajectory that consists of straight lines and sinusoidal 
path of the amplitude A0 = 1 [m] and the period L = 2.45 [m] described by the follow-
ing function: 

HH xAy ωsin0= , (26) 

where .π L2=ω  

take-off run, braking

straight motion

steady motion

0.34 [m]

0.4 [m]

0.76 [m]

5.53 [m]

0.84 [m]

 

Fig. 7. The assigned trajectory of characteristic point H (H0) of the system 

The motion phases, i.e.: take-off run, steady motion and braking, are analyzed. The 
parameters characterizing the mobile robot used in calculations are shown in the 
Table. 
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Table. Parameters characterizing the two-wheeled mobile robot 

m1 [kg]  m4 [kg] Ix1 [kg·m²] Iz1 [kg·m²] Iz4 [kg·m²] N0 [N] 

1.5 5.67 0.00255 0.0051 0.154 43.35 
f1 [m]  l  [m]  l 1 [m] l 2 [m] l 3 [m]  l 4 [m]  
0.01 0.217 0.163 0.07 0.133 0.025 

l 5 [m] r  [m]  r 3 [m]  hS [m]    
0.27 0.0825 0.035 0.1   

In this table, .5 AHl =  It is assumed that 21 ff =  and 21 mm = . The velocity vA of 
the point A equal to 0.3 m/s is used in the calculations and is assumed to be constant. 
Parameters of the trajectory are selected experimentally. 

6.1. Inverse kinematic problem 

In this subsection, the results of the inverse kinematic problem of both systems 
considered are presented. For all examples the time histories of the parameters of mo-
tion, including angular velocities and angles of rotation of wheels 1, 2, and 3 and an-
gular velocity and angle of rotation of chassis 4 as well as angular velocity and angle 
of rotation of the bracket with respect to the chassis, are obtained by using a computer 
simulation.  

Parameters of motion of the dragging system are displayed in Figures 8 and 9. 
Substantial changes in the angular velocities when the robot is on the move along the 
turn (upper and lower vertices of the sinusoidal trajectory) are observed. When the ro-

bot over the straight line is moved, the angular velocities β&  and ψ&  equalize and are 
equal to null. The anglesβ  and ψ  are changed when the system is on the move along 
the turn. 
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Fig. 8. Time histories of motion parameters of the dragging system 
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Fig. 9. Time histories of motion parameters of the dragging system 

In Figures 10 and 11, the parameters of motion of the propelling system are 
shown. 
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Fig. 10. Time histories of motion parameters of the propelling system 

 Likewise, the substantial changes of kinematic parameters when the robot is on 
the move along the turn are observed. Computer simulation results show that the slight 
qualitative and quantitative differences between the dragging and propelling systems 
appear. The parameters of motion are needed to solve the problem of the inverse dy-
namics, i.e., to find the driving torques of wheels 1 and 2, respectively. 
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Fig. 11. Time histories of motion parameters of the propelling system 

6.2. Inverse dynamic problem 

In this subsection, simulation results of an inverse dynamic problem are presented. 
Computer simulation makes it possible to find the solution for a system of Equations 
(19) and (25), i.e., to determine the driving torques and the Lagrange multipliers. For 
both systems the cases where 24π=γ  and 0=γ  are solved. 

Parameters of motion of the dragging model are displayed in Figures 12 and 13. 
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Fig. 12. Time histories of the driving torques (a) and the Lagrange multipliers (b), )24π( =γ  

Substantial changes of the driving torques and the Lagrange multipliers when the 
robot is on the move along the turn are observed. 
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Fig. 13. Time histories of the driving torques (a) and the Lagrange multipliers (b), )0( =γ  

Considerable changes in the driving torques and the Lagrange multipliers at the 
take-off run time and braking and when the robot is on the move along the turn are 
shown in Figures 12 and 13. 

The parameters of motion of the propelling model are displayed in Figures 14 and 15. 
Likewise, considerable changes in the driving torques and the Lagrange multipliers 

at the take-off run time and braking and when the robot is on the move along the turn 
are observed. 

For both cases of the systems analyzed, extremum values of the driving torques and 
the Lagrange multipliers are higher for the propelling system compared to the drag-
ging system. 
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Fig. 14. Time histories of the driving torques (a) and the Lagrange multipliers (b), )24π( =γ  
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Fig. 15. Time histories of the driving torques (a) and the Lagrange multipliers (b), )0( =γ  

7. Conclusions 

Kinematic and dynamic analysis of the system is involved in the problems of in-
verse kinematics and dynamics. Motions of the dragging and propelling systems using 
classical equations of mechanics are described including the kinematics of the bracket 
and the caster wheel.  

In the present paper, the curvilinear trajectory of the point H  (the dragging sys-
tem) or the point 0H  (the propelling system) of the two-wheeled mobile robot is 
considered. The trajectory planing is an important problem in the process of identifi-
cation in real time. Such a trajectory should have a persistence of excitation (PE) con-
dition of the above mentioned mobile robot. On the other hand, the trajectory needed 
should be realized by the robot.  

Based on classical equation of mechanics the dynamics of the systems analyzed is 
described, including the motion over the inclined plane subjected to nonholonomic 
constraints.  

In an available literature, the author has not found examples of using this method 
for the analysis of the problems of inverse kinematics and dynamics of a two-wheeled 
mobile robot that includes a bracket and a caster wheel and moves over the inclined 
plane.  

Time histories of motion parameters can be utilized to plan the movement trajec-
tory system in joint variables or to solve the problem of the control of this object.  

Simulation results show that the slight qualitative and quantitative differences (with 
the exception of the motion over the inclined plane) between the dragging and propel-
ling systems emerge. 

 This consideration can be applied to kinematic and dynamic description of any 
wheeled mobile robot model, independently of the number of its wheels. 
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Kinematyka i dynamika wybranych mobilnych robotów dwukołowych 

Opisano modelowanie wybranych rozwiązań konstrukcyjnych mobilnego robota dwukoło-
wego oznaczonych jako układ ciągniony oraz układ napędzany. RozwaŜany pojazd jest ukła-
dem z więzami nieholonomicznymi. Analizowane są przypadki, w których roboty poruszają się 
po powierzchni nachylonej. Dla przyjętych modeli koncepcyjnych rozwiązano zadanie od-
wrotne kinematyki i dynamiki, zakładając, Ŝe wybrane punkty pojazdów poruszają się po torze 
złoŜonym z odcinków linii prostych i łuku w kształcie funkcji sinus. Zaprezentowano zaleŜno-
ści wybranych parametrów kinematycznych i dynamicznych układów od czasu, które otrzy-
mano w wyniku numerycznego rozwiązania wyprowadzonych wcześniej równań ruchu.  

Z przedstawionych wyników i metodyki postępowania mogą korzystać potencjalni kon-
struktorzy na etapie rozwaŜań koncepcyjnych w procesie projektowania tego typu pojazdów. 


