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Kinematics and dynamics of some selected
two-wheeled mobile robots

S. NOGA
Rzeszow University of Technology, ul. WincentegoaPa) 35-959 Rzeszéw

In this paper, the problem of the kinematics andaaiyics of two constructional conceptions of a two-
wheeled mobile robot is considered. The wheeledilmabbot subjected to nonholonomic constraints
moves over the inclined plane. Its trajectory cstirsg of the straight line and the curvilinear path
described by the sinusoidal function is analyzdte Kinematic equations for arbitrarily chosen paiht
the system are derived by using classical equatbmsechanics. Kinematic and dynamic parameters of
motion from the solution of inverse kinematic anghamic problem are obtained. Simulation results are
presented to illustrate the efficiency of the apgio
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1. Introduction

The problems concerning kinematics, dynamics amdrabof wheeled mobile ro-
bots gain more and more attention. This resultsiypdiom the fact that wheeled mo-
bile robots are very often used in industry, esgcivhere the contribution of an op-
erator to some technological processes is not remed. The mobile robot under
investigation is a system which rolls on convergionheels and is subjected to non-
holonomic constrains. Fundamental theory of nontnmeic systems is developed in
a number of monographs by, for example, Gutowski lNejmark and Fufajev [2].
The kinematic modelling of mobile robots is invgated by many researchers. The
problem of the kinematics of a two-wheeled mobdbat is analyzed in [3-6, 8-10].
In [6, 8, 9], a natural orthogonal complement iplagal to a wheeled mobile robot.
The problem of motion of the mobile robot along thevilinear trajectory is dis-
cussed in the paper [10], excluding the kinematdfdsracket and caster wheel. In pa-
pers [3, 4], the kinematics of this system usiragsical equations of mechanics is de-
scribed, including the kinematics of bracket anst&awheel. The problem of the dy-
namics of a mobile robot is considered in papers6[48, 11]. In papers [6, 8],
a natural orthogonal complement is applied to aeldtemobile robot. The problem of
neural modelling of the mobile robot is discussegaper [11], excluding the dynam-
ics of a bracket and a caster wheel. In papertid,dynamics of this system using
classical equations of mechanics is described. Jdgier continues the recentthor’s
investigations concerning the kinematics and dyoaraf mobile robots [3-5, 10, 11].
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The present paper is organized as follows. Settiondescribes the mobile robot
system under study. In sections three and fourkitmematics of a two-wheeled mo-
bile robot is studied. In section five, the dynasnaf the mobile robot is analyzed.
Section six presents some simulation results, antion seven gives some concluding
remarks.

2. Model of the system

An assumed model of the mobile robot is presemdeigure 1. The basic units of
the model are as follows: frame 4, driving and sbgewheels 1 and 2, and bracket
with caster wheel 3. Wheels 1 and 2, mounted orshiadts, are driven separately by
two electric motors. Wheels rotate about their awdgse positions are invariable in
relation to the frame. The third wheel is mountadaaotary bracket. In the modelling
of the mobile robot system, the following assummptiare adopted:

» There is no slipping between the wheel and the flio®., rolling contact is main-
tained.

» The vehicle cannot move sideways to maintain thabnomic constraint.

» The motion of the mobile robot is confined to thangxy.

Paper [7] presents the specifications and contfalse mobile robot shown below.

The coordinatesr,, a,, anda, are the angles of rotation of wheels 1, 2, aneé-3,

spectively. The angle of rotation of the formativbeel 1z is denoted byr . The an-
gle S is the angle of instantaneous angular displaceoférame 4.

X
Fig. 1. The two-wheeled mobile robot

The angley is the angle between the longitudinal symmetrys afithe chassis
and the bracket. The following elemeritsl,, I, 15, |, are the lengths, and, r,,
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r, are the radii defined in Figure 1. The radiuss the radius of the formative wheel

1z . The pointA is a characteristic point of the frame and thenpof intersection of
the frame longitudinal symmetry axis with the agigotation of wheels 1 and 2. The
pointsB, C, andF are the centres of masses of wheels 1, 2, anekspectively. The
point S is the centre of mass of chassis 4. The pbDiris the connection point of
bracket 3 and frame 4.

The position and orientation of the mobile robat described by seven coordi-
nates: x,, Y,— the Cartesian coordinates of the pawta,, a,, a;, B, ¢ — the
angle coordinates.

The mobile robot constitutes a nonholonomic playstem. If no slipping and no
sideway motions are assumed, the mobile robotwasliegrees of freedom only. One
can choose the angles of driving wheels as gemedakoordinates for the conven-
ience of control design. The objective of the kiagimanalysis of the mobile robot is
to derive the kinematic parameters of the systetarins of generalized coordinates.

In the present paper, two conceptions of the coastmal schemes of this kind of
robot are analyzed. When the cerfref mass is situated behind the axis of wheels
1 and 2 (see Figure 2a), we deal with the so-callediging system [4]. When the
point Sis situated before the axis of wheels 1 and 2 Esgere 2b), we deal with the
so-called propelling system [4].

Fig. 2. Schematic diagrams of the two-wheeled neotnibot

3. Kinematics of the dragging system

The robot under consideration is moved on the pl&he chassis and the bracket
with the caster wheel undergo planar motion. THeowy distribution of characteris-
tic points of the system is displayed in Figure 3.

The pointE is an instantaneous centre of chassis 4, anddin¢ @ is the instanta-
neous centre of the bracket.

According to the nonholonomic constraints and rippgig condition, the robot
has to move in the direction of the symmetry aixés;
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X5 =V, COSB, Y, =V,Sing, (1)

wherev, is the velocity of the poim. Likewise, the bracket has to move in the direc-
tion of the symmetry axis, i.e.:

Xe =Vg COS(B=¢), Ve =Vesin(B-y), (2)

where v is the velocity of the poirff (see Figures 1 and 3), and,(yg) are the co-
ordinates of the poirf given directly by:

Xe =Xp —lcosB -l cos(B-¢), Ve =Ya-IsinB-l sin(B-y). )

Fig. 3. The velocity distribution of the system

From Equations (1) — (3), the angular velocity loé tbracket with respect to the
chassis is determined [4]:

wzli[,ﬁ"(l cos¢/+l4)—vAsint//]. (4)

Taking into account kinematic equations for thenpsi8, C, andF, the angular veloci-
ties of wheels 1, 2, and 3 are given by [4]:
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v, c_Vy ol . _V 5l o
a=2+pL,  a,=-A-pL a, =—2cosy + S—siny. ®)
r r r r I3 3

Taking into account the velocity distribution fdret pointsA, B, andC (Figure 3) and
Equation (5), the angular velocity of formative whéz is expressed by:

a=2 (@ a) (6)

4. Kinematics of the propelling system

The other system is the so-called propelling systekewise, the chassis and the
bracket with the caster wheel undergo planar mofitre velocity distribution of the
characteristic points of the system is shown inuFegl.

y“E

Fig. 4. The velocity distribution of the system

The corresponding formulae describing the kinersaticpropelling system are as
follows [4]:

Xz =Vg COS(B+¢),  Yr =Vesin(B+y), (7

X =X, +1COSB-1,COS(B+W), Ve =y, +IsinB-l,sin(B+y), ®

@ =B cosp =1,) v, sing] (©)
4
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g=Ya_pgh g Vayph g S Vacogss gl sing. (10)
r r r r s ry
5. Dynamics of the mobile robot

In this section, the dynamics of constructionalesobs is described based on clas-

sical equations of mechanics; the dynamics of theket and the caster wheel is ex-
cluded. The motion of the robot is considered mphanexy inclined to the horizon-

tal planex,y,, wherey is the angle of inclination of the motion planég(ie 5).

z | 20

Yo

% %

Fig. 5. The motion plane of the system

The mathematical model of the mobile robot descdribg n generalized coordi-
nates grouped together in the vectprand subjected t® <n nonholonomic con-
straints is derived. The formulation of the mod€Elirderest is based on Lagrange’s
equations for constrained mechanical systems.

Lagrange’s equations of the system at hand haviothe[1, 2, 6]:

d(9E) OE oV r
AEN-E LY -+ 3T (g, 11
dt(aqj o o Q+J (q) (11)

whereE = E(q,q) is the kinetic energy of the syste, is the Newtonian potential of
the system,Q is the vector of generalized forcelg) is the matrix associated with
the constraintsq is the vector of generalized coordinatgsis the vector of general-

ized velocities, A is the vector of the Lagrange multipliers, andgbperscripT is the
transpose of a matrix operator.

The matrixJ(q) is obtained from the equations of kinematic cansts in terms of
generalized velocities, i.e., [1, 2, 6]:

J(@)g=0. (12)
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5.1. Dynamics of the dragging system

The position and orientation of the mobile robotlaging the bracket with the
caster wheel are described by the following veofayeneralized coordinates:

q=[Xa,Ya: Bt (13)

As is mentioned earlier, the mobile robot has twgrdes of freedom only. There are
two nonholonomic constraints. From Equation (1E)rtiratrixJ(q) is given by:

{1 0 0 -rcosp
J(Q){o 10 —rsinﬂ} (14)

wherer =1, =r,.
It is shown that the kinetic energy of the draggggtem takes the form [3, 5]:

1 . 1 ) e
E = (my +m, +m, )5+ = (my+m, +m, )32 + (my - m, )l.f(x,coss
+yASInﬁ)+m4|2ﬂ(XAS|nﬂ_yACOSB)+(IZl_Izz)hlaﬁ-l-i(lzl-l-Izz)hl.zﬂz
+%(rnl.|12+rnZ|12+m4|22+|x1+|x2+|z4)182+%(|21+|22)d21 (15)

where m;, m,, m, are the masses of members of the system,l,,, 1, |, 1,4
are the inertia moments of movable members of yseem, h, =1, /r is a nondimen-

sional parameter.
Gravitation potential of the dragging system is:

V =(m +m, +m,) gsinyx, —m,gl,sinycoss+[(m +m,)r + mh;] gcosy,  (16)

where hg is the distance between the centre of inertiathadnotion plane of the ro-

bot, g is the acceleration due to gravity.
The vector of unconstrained generalized force$vismgby:

0
0
(Ml_MZ_N1f1+N2f2)hl
M1+M2_N1f1_N2f2

T= : a7
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where M,, M, are the driving torquesN,, N, are the axial forces acting on the
wheels, f,, f, are the coefficients of rolling friction.

When the robot motion over the inclined plane @ired, the value of the resisting
force depends on the robot orientation on the mqtlanexy. The axial forces are ex-
pressed by [4]:

N, = N{(l—ll—z} cosy - thiny(Ilsin,B+|—100$,8H,
1
N, = NOK1—|I—ZJCOSV+ hssin;{%sinﬁ—%cosﬂﬂ,

where N, = 05(m, +m, +m,)g.

Taking into account Equations (14)—(17), Lagrangejgations (11) for this model
are as follows:

(18)

myl,/sing +(2m +m,) riicosp +myl, f%cosp — (2m,+m,) ra fsing
+(m +m, +my)gsiny =1,
-myl, fcosp +(2m, +m,)rasing +myl, A%sing +(2m, +m,) rafcosp = i,
@ml2+m,l2+21 ,+21 ,h?+1,,) f—myl,raf +m,gl,sinysing (19)
=(M; =M, =N, f; +N; )hy,

(2m, +m, +£2|21)r2<3£+m4lzr,82 +(m, +m, +m,) gr sinycosp
r
=M;+M,-N;f; =N, f,,
where A, ,A, are the Lagrange multipliers.
5.2. Dynamics of the propelling system

Likewise, the position and orientation of the mebibbot are described by the vec-
tor of generalized coordinates:

q=[Xa, Ya, B,a]". (20)

The kinetic energy of the propelling system takesform:
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E =%(m1+m2 +m4)xf\+%(ml+ m, +m,) Y2 + m,l, B(-x,sinB + y, cosp)

1 . 1 : 1 .
+E(Izl+|22) h.'l.2132+§(m1|12+m2|12+m4|22+|x1+Ix2+|z4)ﬂ2+z(|zl+|22)a2' (21)

Gravitation potential for this system is expresisgd

V =(m, +m, +m,) gsinyx, +m,gl,sinycosf+[(m, +m,)r +m,hg] gcosy. (22)

The vector of unconstrained generalized force$vismgby:

0
0
(_M1+M2+N1f1_N2f2)hl ’
My +M; =N f, =N, f,

7=

where the resisting forces are:

N, = N{(l—ll—z} cosy + hg siny{%sin,@ﬂ—%osﬁﬂ,
1
N, = N{(l—ll—zj cosy - hssin{llsinﬁ—l—lcosﬂﬂ.

Lagrange’s equations (11) for this case are writtehe form:

—-m,l, Asing +(2m, + m,) réicosp —m,l, fZcosp - (2m, +m,) ra fsing
+(my, +m, +m,) gsiny =4,

m,l, fcoss +(2m, +m,)réasing —m,l, A%sing +(2m, +m,) rafcosp = A,,

(2myl2+m, 12 +21  +21 02 +1,,) f+m,lraf—m,gl,sinysing
=(=M;+M, +N; f, =N, f,)hy,

(2m1+m4 +£2I21J r2a—m,l,r f%+(m +m, +m,)grsiny coss

r

=M, +M, - N, f, - N, f,.

(23)

(24)

(25)
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6. Simulation

In this section, simulation results of inverse kivaic and dynamic problem using
the systems suggested earlier are presented. Cengnulation makes it possible to
find the solution for the system of Equations (8), (9), (10), (19) and (25), and then
to determine the kinematic and dynamic parametensotion being of our interest. In
the first step, the problem of inverse kinematisealized. Considering the problem
of inverse dynamics, we obtain the required tim&dnies of motion parameters as
a result of solving inverse kinematics problem. Bobheme of executed process is
shown in Figure 6.

Trajectory |=»{ Inverse kinematicg—» Parameterg=»| Inverse dynamicy Parameterg

Fig. 6. The scheme of the problem of inverse dyeami

It is assumed that the poit (the dragging system) or the poiHt, (the propel-

ling system) moves along the trajectory that caasi$ straight lines and sinusoidal
path of the amplitudé, = 1 [m] and the periotl = 2.45 [m] described by the follow-
ing function:

Yu = Ay Sinwx, , (26)
where w=2x/L.

0.34[m]

0.84 [m]
5.53 [m]

0.76 [m]

take-off run, braking
0.4 [m]

straight motion

steady motion

Fig. 7. The assigned trajectory of characteristimpH (Hp) of the system

The motion phases, i.e.: take-off run, steady nmotinod braking, are analyzed. The
parameters characterizing the mobile robot usedaiculations are shown in the
Table.
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Table. Parameters characterizing the two-wheeldnilenmobot

m, [kg] m, [kg] Lo [kg-m?] 1 [kg-m?] |24 [kg-m?] No [N]
1.5 5.67 0.00255 0.0051 0.154 43.35
fy [m] | [m]  [m] I [m] s [m] L4 [m]
0.01 0.217 0.163 0.07 0.133 0.025
I's [m] r_[m] rs[m] hs[m]
0.27 0.0825 0.035 0.1

In this table,l; = AH .1t is assumed that, = f, and m, =m,. The velocityv, of

the pointA equal to 0.3 m/s is used in the calculations arassumed to be constant.
Parameters of the trajectory are selected expetainen

6.1. Inverse kinematic problem

In this subsection, the results of the inverse rkiagc problem of both systems
considered are presented. For all examples theltisteries of the parameters of mo-
tion, including angular velocities and angles dhation of wheels 1, 2, and 3 and an-
gular velocity and angle of rotation of chassissdagll as angular velocity and angle
of rotation of the bracket with respect to the si|gsare obtained by using a computer
simulation.

Parameters of motion of the dragging system agadied in Figures 8 and 9.
Substantial changes in the angular velocities wtherrobot is on the move along the
turn (upper and lower vertices of the sinusoidajetctory) are observed. When the ro-

bot over the straight line is moved, the anguldoaites £ and ¢ equalize and are
equal to null. The anglg andy are changed when the system is on the move along
the turn.

b)

- = = 7 T T 1T T T T
[m"ffs]\ \ \ \ \ \
O I D | | D R
gl [\
| | | | | |
87 7777777 -
\ R
| 0 NV
e N = =
R VA R VA I\ W
| S A 5[3]\

0

0 5 10 15 20 25 30 35

Fig. 8. Time histories of motion parameters of dn@gging system
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Fig. 9. Time histories of motion parameters ofdn@gging system

In Figures 10 and 11, the parameters of motionhef propelling system are
shown.

b)

B~ — 1 — 717 17 7|7 7 T
[radfs]
ol el L
\ \ \ \ \ \
\ \
87 7777777 -
\ \ \ \ \ \
\ £y | \ \ \ \
4| == N + =
VeV N\

0

Fig. 10. Time histories of motion parameters ofpihepelling system

Likewise, the substantial changes of kinematic p&tars when the robot is on
the move along the turn are observed. Computerlation results show that the slight
gualitative and quantitative differences betweean dhagging and propelling systems
appear. The parameters of motion are needed te sodvproblem of the inverse dy-
namics, i.e., to find the driving torques of whekland 2, respectively.



Kinematics and dynamics of some selected two-wheelbilennobots 67

a) b)
e I S e e R e e R A A e A B
rad] o, wlrad)s],
e ST T e L yfred]
|

150

100

50

Fig. 11. Time histories of motion parameters ofpihepelling system
6.2. Inverse dynamic problem

In this subsection, simulation results of an ineedtlgnamic problem are presented.
Computer simulation makes it possible to find tbkison for a system of Equations
(19) and (25), i.e., to determine the driving tagw@and the Lagrange multipliers. For
both systems the cases whgre /24 and y = Oare solved.

Parameters of motion of the dragging model arelalysgl in Figures 12 and 13.

a)
I T N R

H
=

d A O N A O R N W A O
:

Fig. 12. Time histories of the driving torques &ayl the Lagrange multipliers (b(y = 11:/24)

Substantial changes of the driving torques and_ttgrange multipliers when the
robot is on the move along the turn are observed.
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h A O N Bk o r N

Fig. 13. Time histories of the driving torques #ayl the Lagrange multipliers (b)y = 0)

Considerable changes in the driving torques andL#grange multipliers at the
take-off run time and braking and when the robatristhe move along the turn are
shown in Figures 12 and 13.

The parameters of motion of the propelling modeldisplayed in Figures 14 and 15.

Likewise, considerable changes in the driving tesqand the Lagrange multipliers
at the take-off run time and braking and when tit®ot is on the move along the turn
are observed.

For both cases of the systems analyzed, extremiuas/af the driving torques and
the Lagrange multipliers are higher for the prdpglisystem compared to the drag-
ging system.

Fig. 14. Time histories of the driving torques &ayl the Lagrange multipliers (b(y = 11:/24)
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Fig. 15. Time histories of the driving torques #ajl the Lagrange multipliers (b)y =  0)

7. Conclusions

Kinematic and dynamic analysis of the system iolved in the problems of in-
verse kinematics and dynamics. Motions of the draggnd propelling systems using
classical equations of mechanics are describeddimg the kinematics of the bracket
and the caster wheel.

In the present paper, the curvilinear trajectorythef point H (the dragging sys-
tem) or the pointH, (the propelling system) of the two-wheeled mobidot is

considered. The trajectory planing is an importanablem in the process of identifi-

cation in real time. Such a trajectory should hayeersistence of excitation (PE) con-
dition of the above mentioned mobile robot. On ékiger hand, the trajectory needed
should be realized by the robot.

Based on classical equation of mechanics the dwsaafithe systems analyzed is
described, including the motion over the inclinddne subjected to nonholonomic
constraints.

In an available literature, the author has not tberamples of using this method
for the analysis of the problems of inverse kindosaand dynamics of a two-wheeled
mobile robot that includes a bracket and a castexelvand moves over the inclined
plane.

Time histories of motion parameters can be utilimeglan the movement trajec-
tory system in joint variables or to solve the peat of the control of this object.

Simulation results show that the slight qualitatvel quantitative differences (with
the exception of the motion over the inclined p)dpetween the dragging and propel-
ling systems emerge.

This consideration can be applied to kinematic dydamic description of any
wheeled mobile robot model, independently of thenber of its wheels.
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Kinematyka i dynamika wybranych mobilnych robotéw dwukotowych

Opisano modelowanie wybranych rozman konstrukcyjnych mobilnego robota dwukoto-
wego oznaczonych jako uktadagniony oraz uktad najplzany. Rozwazany pojazd jest ukla-
dem z wegzami nieholonomicznymi. Analizowane przypadki, w ktérych roboty porusaagie
po powierzchni nachylonej. Dla przgych modeli koncepcyjnych rozwiano zadanie od-
wrotne kinematyki i dynamiki, zaktadgm, ze wybrane punkty pojazdéw poruszaje po torze
ztozonym z odcinkéw linii prostych i tuku w ksztatciarfkcji sinus. Zaprezentowano zate-
$ci wybranych parametrow kinematycznych i dynamicyktadéw od czasu, ktdre otrzy-
mano w wyniku numerycznego rozwania wyprowadzonych wcéaej rownai ruchu.

Z przedstawionych wynikow i metodyki pgpbwania mog korzyst& potencjalni kon-
struktorzy na etapie rozuwan koncepcyjnych w procesie projektowania tego typjapdow.



