
APPLICATION NOTE

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.2 3DJH���RI��� December 2002

nRF Radio protocol guidelines

��� *(1(5$/

This application note describes two different methods of how to implement software
routines to transfer data from one microcontroller to another via a nRF chip:

• Oversampling
• Use of a UART (Universal Asynchronous Receiver Transmitter.)

This document only describes the link-layer part of the OSI reference model. It is
however enough information in this document to be able to build a radio link using
the nRF devices.

��� 3$&.(7�)250$7

Preamble Address Payload Checksum

Figure 1 Reference packet format

����� 3UHDPEOH
A packet has to begin with a preamble. The preamble has two tasks:
1: Stabilise the receiver.
2: Synchronise a receiving UART if used.
How long a preamble should be, and how it should look like will vary from nRF
device to nRF device and if you are using a UART or not.
Please refer to Table 1 for recommended preambles.

'HYLFH :LWK�8$57 :LWKRXW�8$57
nRF40x 55FFh AAh
nRF903 CCCCCCCCF0h CCCCCCCCh

Table 1: Recommended preambles

����� $GGUHVV
The address in the packet is used by the receiver to identify a packet. It can be a
system address or a device address. In the case of a system address, the device address
will be part of the payload. The length of the address will depend on how many
devices the system contains of and the wanted likelihood of misinterpretation of a
packet. Normally one - two bytes are enough as address field.

Q$1������

APPLICATION NOTE

Q$1�������Q5)��5DGLR�SURWRFRO�JXLGHOLQHV�

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.2 3DJH���RI��� December 2002

����� 3D\ORDG
The payload bytes contain the data that is intended for the next layer in the protocol
stack. How many bytes the payload consists of will vary from application to
application, but the golden rule is to keep the packet as short as possible because this
will give the packet greater chance to survive through the link.

����� &KHFNVXP
The checksum is used to validate the packet. This is calculated from the address and
payload bytes. Never use the preamble bytes when calculating checksum. Normally
one byte with checksum is enough. A typical checksum routine is the cyclic redundant
check (CRC) routine. But also a much simpler XOR routine can be used.

For all nRF devices except the nRF240x in ShockBurst mode, the control unit has
to perform preamble generation, address detection and checksum
generation/validation. For the nRF240x family in ShockBurst mode, this is done
automatically.

APPLICATION NOTE

Q$1�������Q5)��5DGLR�SURWRFRO�JXLGHOLQHV�

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.2 3DJH���RI��� December 2002

��� 29(56$03/,1*

The oversampling method is a sampling method implemented in software and uses
only the microcontrollers parallel port pins as interface to the nRF device. The
method requires much CPU time and the data rate it is capable of handling is
dependent on the CPU clock speed. A microcontroller that runs on 4MHz clock and is
capable of doing most instructions on one cycle will not be able to handle data rates
higher than 15kbit/sec.
The oversampling method is only recommended on the nRF40x family. For the
nRF903 the use of UART is the preferred method.

Oversampling will result in a reliable link. Oversampling with a rate of 3 times the
bit-rate with weighting of the samples, will be noise resistant. However timing is
critical, as the period between each sampling must be consistent.

If you are using a microcontroller with an internal timer with overflow interrupt, you
should use this to handle the timing. To implement a send routine is easy. The only
pitfall is to forget about timing, and create bit edge jitter on the outgoing bit stream.

In order to prevent this, the interrupt routine must be able to run as soon as possible
after the interrupt occurs. This means that interrupt disabling should be used only
where it is strictly necessary.

The receive routine is more complex. It has to be able to determine if the received bit
is a "one" or a "zero". When using oversampling, the receive routine should sample
the received bit stream at least three times the bit-rate. Then the samples must be
weighted according to a weighting table to determine the result. (An example of such
a weighting table is shown in Table 2 below.) In addition to the three samples of the
present bit, the last sample of the previous bit should be used. This will make the
routine more resistant against edge jitter.

APPLICATION NOTE

Q$1�������Q5)��5DGLR�SURWRFRO�JXLGHOLQHV�

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.2 3DJH���RI��� December 2002

6DPSOH � 6DPSOH�� 6DPSOH�� 6DPSOH�� 5HVXOW
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Table 2: Weighting table using three samples per bit

"Sample 0" is the last sample. "Sample 3" is the last sample in the previous bit.
"Result" is the resulting value of the bit.

APPLICATION NOTE

Q$1�������Q5)��5DGLR�SURWRFRO�JXLGHOLQHV�

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.2 3DJH���RI��� December 2002

��� 8$57
A Universal Asynchronous Receiver Transmitter (UART) can be found as a
peripheral on many microcontrollers. The UART will convert between serial and
parallel data. So if a byte is written to the UART inside the microcontroller, it will
come out as serial data on the UART TXD pin. To be able to read serial data
correctly, the UART must have a start and a stop bit in addition to the actual byte. The
start bit is always a “0”, and the stop bit is always a “1.” When the UART detects a
negative transition, it will start sampling the next eight bits at the programmed data
rate. The stop bit is always “1” so a negative transition is made when the next start bit
occurs. Normally a UART packet will contain ten bits/byte, but there is a possibility
to use eleven bits/byte, where the added bit can be used for parity check i.e.

start 0 1 2 3 4 5 6 7 stop

Figure 2 UART packet

When there are no transmitters present, a receiving nRF device will demodulate noise.
This noise will be handled by the receiving UART. The receiving UART might be in
the middle of sampling a byte when the first byte in the preamble arrives. Detecting
the start bit is crucial to read the rest of the byte correctly. Therefore the preamble
must be able to synchronise the UART so that when the first address byte arrives, the
UART will detect the start bit correctly. A preamble with four bytes of CCh followed
by a byte of hF0 will ensure that the receiving UART will be in sync and that the
nRF903 receiver is dc levelled.

Noise CCh CCh CCh CCh F0h First addr. byte

Figure 3 Preamble demodulated by a nRF903

Data passed trough the UART will be reversed. This means that on air, a preamble for
the nRF903 will look like the one in Figure 3. Please note that noise is marked yellow,
all start and stop bits are red, preamble bytes are green and first address byte is blue.

When using a UART together with the nRF903, the connection between the two data
lines from the UART and the nRF903s bi-directional Data line can be done as shown
in Figure 4.

APPLICATION NOTE

Q$1�������Q5)��5DGLR�SURWRFRO�JXLGHOLQHV�

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.2 3DJH���RI��� December 2002

MCU

U
A
R
T

nRF 903

Data
RXD

TXD 10Kohm

TXEN

Figure 4 Connecting the UART to the nRF903

When using nRF transceivers with two separate data lines, the UART TXD shall be
connected to the nRF DIN pin, and the UART RXD shall be connected to the nRF
DOUT pin. ,W�LV�YHU\�LPSRUWDQW�WKDW�WKH�VXSSO\�YROWDJH�IRU�WKH�PLFURFRQWUROOHU
DQG�WKH�Q5)�GHYLFH�DUH�RQ�WKH�VDPH�OHYHO�

APPLICATION NOTE

Q$1�������Q5)��5DGLR�SURWRFRO�JXLGHOLQHV�

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.2 3DJH���RI��� December 2002

��� 6FUDPEOLQJ

A data packet for RF communication should have as many transitions as possible to
ensure a high performance RF link. The challenge is to manage this without adding
too much overhead to your data packet like Manchester Coding does.

Scrambling of data is one way that does not add any overhead to your data packet at
all. Scrambling is simply a logical XOR between the data byte and a code byte.
If we choose 10101010 as our code byte and 11110000 as the data byte and perform
scrambling we get 10101010 XOR 11110000 = 01011010 as result. This is an
increase from one to six transitions! To de-scramble data at the receiver side, we just
take the received byte; 01011010 and perform XOR with the code; 10101010 and get
the original data byte; 11110000 as the result. (01011010 XOR 10101010 =
11110000)

����� 6\QFKURQL]DWLRQ
A UART packet contains of one start bit (always zero), eight data bits and one stop bit
(always one.)

start 0 1 2 3 4 5 6 7 stop

Figure 5 UART packet

The receiving UART will use the negative transition of the start bit as synchronisation
when reading one byte of data. This is good since de-scrambling of received data
requires synchronisation.

����� '\QDPLF�VFUDPEOLQJ
A data packet may contain bytes that are not suited for scrambling. In example the
byte 10101010 will when scrambled with 10101010 give 00000000 as result. Clearly
this is a situation where use of scrambling will UHPRYH transitions from the packet,
and scrambling should not be used. For link protocols that shall be able to handle any
byte value, and still get the maximum possible transitions, we need a way of
switching the scrambling on and off for each byte in the data packet. This is called
dynamic scrambling.

To be able to do this, we need one bit per UART packet that tells the receiving
microcontroller if the byte is scrambled or not. Luckily, it is possible to add an extra
bit to the UART packet. This bit was used as a parity bit option in RS232C.

start 0 1 2 3 4 5 6 7 stopP

Figure 6 UART packet with extra bit (P)

APPLICATION NOTE

Q$1�������Q5)��5DGLR�SURWRFRO�JXLGHOLQHV�

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.2 3DJH���RI��� December 2002

We also need rules for when to use scrambling or not.
By using 10101010 as the code byte, we will be able to get maximum 7 transitions in
one scrambled byte. If a data byte has n number of transitions before scrambling, the
result will have 7-n transitions. So if a data byte has less than 4 transitions, it will be
wise to scramble the byte.

����� ,PSOHPHQWDWLRQ
How to count number of transitions:
• Let the data byte be X.
• Make a copy of X, Y.
• Left shift Y one bit.
• Let Z = X XOR Y
• Count number of ”1” in Z. It tells you how many transitions X has.
• If Z has less then 4 ”1”s, scramble X before transmission.
• If scrambling, remember to set bit 9 in the UART packet.

APPLICATION NOTE

Q$1�������Q5)��5DGLR�SURWRFRO�JXLGHOLQHV�

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.2 3DJH���RI��� December 2002

��� 1RLVH�FRQVLGHUDWLRQV�

Range and quality of service is dependent on the way the incoming data stream is
interpreted. An oversampling algorithm already has a built in filter for noise or
multipath effects. Any additional error detection and correction will provide an even
better margin towards noise or distortion of the data stream. To be able to perform
forward error correction a packet has to contain a lot of overhead. It is not
recommended that such functionality is implemented unless it is strictly needed.

��� &RQFOXVLRQ

The nRF903 requires the UART method. It will run at 76.8kbit/sec and no low cost
microcontroller can handle that data rate with the oversampling method. A high-speed
microcontroller will be able to perform oversampling on 76,8kbit/sec, but the extra
cost for this high-speed microcontroller will exceed the extra cost for a
microcontroller with a UART. The total solution for the nRF903 design will be less
expensive with the UART method.

For the nRF40x family, the use of the UART method will ease implementation of the
protocol and minimise the workload for the microcontroller. If a low-cost application
with low data rate is the design goal, a low-cost microcontroller can be loaded with
the oversampling method and perform well.

The nRF401 demo kit is based on the use of a low-cost microcontroller with the
oversampling method.
The nRF903 demo kit is based on the UART method, running at 76.8kbit/sec with use
of scrambling.

APPLICATION NOTE

Q$1�������Q5)��5DGLR�SURWRFRO�JXLGHOLQHV�

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.2 3DJH����RI��� December 2002

$SSHQGL[

)ORZFKDUW�IRU�RYHUVDPSOLQJ�	�LQWHUSUHWDWLRQ�RI�UHFHLYHG�GDWD�VWUHDP

This algorithm must be
implemented as a timer
overflow interrupt routine in a
MCU. Then the timer should be
set to time out three times per
bit periode.
It is important that this routine
is implemented as short and
efficient as possible, because
even if a MCU runs at 4 MHz
cyckle, sampling a 20 kbits/s bit
stream three times each bit
gives only 66 cycles to handle
each sample.

Start

Sample the
bitstream

Increment sample
counter

Three
samples?

Exit

Yes

Weight samples
according to

weighting table

No

Reset sample
counter

Store the new bit

Store the sample

APPLICATION NOTE

Q$1�������Q5)��5DGLR�SURWRFRO�JXLGHOLQHV�

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.2 3DJH����RI��� December 2002

Start

Generate data
packet and store

in memory

Put the nRF chip
in TX mode by

setting TXEN high

Wait
recommended
time to stabilise

transmitter

Load CCh in to
UART TX register

Send CCh four
times

Load and send
F0h via the UART

Load next data
byte in to UART

TX register

All bytes send?

Wait until UART is
finish sending byte

Return to RX
mode by setting

TXEN low

Wait
recommended
time to stabilise

receiver

Exit

No

Yes

This is to
synchronise the
receiving UART

)ORZFKDUW�IRU�8$57�WUDQVPLVVLRQ�
This flowchart shows how to send a
data packet via hardware UART.

APPLICATION NOTE

Q$1�������Q5)��5DGLR�SURWRFRO�JXLGHOLQHV�

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.2 3DJH����RI��� December 2002

)ORZFKDUW�IRU�8$57�UHFHLYH�

This routine must be run each time the UART has
received a whole byte. In most microcontrollers
with hardware implemented UART, an interrupt is
send to the MCU each time a complete byte is
received. Detection of start word can be done by
setting a bit in a dedicated control register.

Start

Start word
detected?

Store byte in
memory

Increment byte
counter

All bytes
received?

Check sum
ok?

Reset byte
counter

Yes

Yes

Indicate that valid
data has been

received

Exit

Yes
No

APPLICATION NOTE

Q$1�������Q5)��5DGLR�SURWRFRO�JXLGHOLQHV�

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.2 3DJH����RI��� December 2002

/,$%,/,7<�',6&/$,0(5
Nordic VLSI ASA reserves the right to make changes without further notice to the
product to improve reliability, function or design. Nordic VLSI does not assume any
liability arising out of the application or use of any product or circuits described
herein.

/,)(�6833257�$33/,&$7,216
These products are not designed for use in life support appliances, devices, or systems
where malfunction of these products can reasonably be expected to result in personal
injury. Nordic VLSI ASA customers using or selling these products for use in such
applications do so at their own risk and agree to fully indemnify Nordic VLSI ASA
for any damages resulting from such improper use or sale.

Application Note. Revision Date: 16.12.02

Application Note order code: 131202-nAN400-07

All rights reserved ®. Reproduction in whole or in part is prohibited without the prior
written permission of the copyright holder.

APPLICATION NOTE

Q$1�������Q5)��5DGLR�SURWRFRO�JXLGHOLQHV�

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - Phone +47 72 89 89 00 - Fax +47 72 89 89 89
Revision: 1.2 3DJH����RI��� December 2002

<285�127(6

APPLICATION NOTE

Q$1�������Q5)��5DGLR�SURWRFRO�JXLGHOLQHV�

Revision: 1.2 3DJH����RI��� December 2002

1RUGLF�9/6,����:RUOG�:LGH�'LVWULEXWRUV

)RU�<RXU�QHDUHVW�GHDOHU��SOHDVH�VHH�KWWS���ZZZ�QYOVL�QR

0DLQ�2IILFH�
Vestre Rosten 81, N-7075 Tiller, Norway

Phone: +47 72 89 89 00, Fax: +47 72 89 89 89

9LVLW�WKH�1RUGLF�9/6,�6�ZHEVLWH�DW�KWWS���ZZZ�QYOVL�QR

