Introduction to Veter project

Andrey Nechypurenko Maksym Parkachov
Munich, Germany Munich, Germany
andreynech@gmail.com lazy.gopher@gmail.com

August 13, 2010

Contents

1

2

Introduction
Hardware design

Software architecture description

3.1 Vehicle on-board application
3.1.1 Networking with Ice
3.1.2 Video handling with Gstreamer

3.2 Cockpit application
3.2.1 Communication subsystem
3.2.2 Visualization subsystem
3.2.3 Video decoding subsystem L0
3.2.4 Input hardware support subsystem

1 Introduction

About three years ago, as a hobby project, we start developing small vehicle
equipped with on-board computer connected to WLan adapter and web-camera.
The idea was to make it possible to control the car over Internet by streaming
the video from on-board camera to the driver and send control commands back
to the car. Figure 1 shows the first version of the car.

Figure 1: Monster Track version 1.0.

As the first version of the car was ready we got an idea to organize races
where several drivers could buy a ticket for the race (actually download SSL
certificate to connect to the car) and drive against each other. Collected money
could be used to pay the prize to winners and make the profit for organizers.
We are currently in process of organizing such races and looking for business
partners. Please feel free to contact us if you are interested.

While developing the first version of the car, we collect a lot of experience
with hardware and software design. Also, there are new embedded platforms
appeared on the market which are more suitable for our purposes. That is why,
we decide to set new goals for our project which might be more attractive and
let us continue improving our hardware and software skills. In particular, we
decide to get up in the air and build quad-copter which could be also controlled
over the Internet (just imaging Star Wars like races in the 3D maze :-)).

We are reusing a lot of building blocks (software and hardware) from our first
car, but there are also some fundamental changes. For example, in contrast to
our first car, which was built using Intel Atom based mini-ITX board we decide
to use BeagleBoard as on-board computer. The big change at the software side
is the move from simple Xvid based video encoding to Gstreamer library. As a
first iteration to achieve our new goal, we decide to rebuild the car with the new
software and hardware to collect experience with these new platforms. After
that we can apply these technologies to build quad-copter.

This document describes hardware and software related aspects of the new
car design and organized as following. Section 2 provides the overview of our
current hardware setup. Section 3.1 describes the architecture of the vehicle
on board application and section 3.2 describes the architecture of the cockpit
application used by the driver to control the vehicle.

2 Hardware design

The Figure 2 represents the main hardware components we are using.

AR
ooooooon
oooo

Figure 2: Main parts.

BeagleBoard fits our needs very well because of: a) small form factor; b) low
power consumption which in turn reduce size and weight of batteries; ¢) powerful
enough to compress video with h264 codec in real-time using DSP; d) provides
enough IO channels such as I12C and GPIO to control attached hardware and
e) provides USB ports to connect camera and WLan adapter.

Trainer Board is expansion board designed specially for beagle board and
provide the set of useful hardware such as for example voltage level shifters to
convert BeagleBoard’s 1.8V based IO pins to more widely used 5V level. In ad-
dition, there is on-board Atmel AVR micro-controller which can greatly simplify
the implementation of the real-time motor control tasks such as PWM signal
generation. Despite the convenience of the Trainer Board, we are considering it
as a temporary solution for the car. In the future, we are going to use motor
controllers with I2C interface directly connected to the BeagleBoard and as a
result eliminating the need for additional board. Moreover, we are currently
investigating the real-time performance of the Linux kernel with preempt_rt
patches on the BeagleBoard to control motors directly from the BeagleBoard
without additional micro-controllers. It might reduce the overall system weight
and hardware complexity.

Logitech USB HUB is required because there is only one USB host port
available on the beagle board. However, it might be possible to force the USB
OTG port to work in a host mode with a little bit of soldering. We are cur-
rently investigating this option. In case of success, the USB HUB would not be
necessary which will greatly reduce system size and weight.

Logitech 9000 Pro USB camera is high quality USB camera. The main reason
why we decide for this camera was the bright view angle which is absolutely
required to drive the car remotely. In the first version of the car, we start

with Philips ToU Camera. However, after test drives we found that it is very
hard to drive the car with such view angle and move to the brighter angle analog
camera connected through the USB capturing module. 9000Pro provides almost
the same view angle as our analog camera and that is why we decide to use it
for the new car design.

D-Link USB WLan adapter is standard 54 Mbit/s adapter with Ralink
chipset which is well supported by Linux kernel.

Reely buggy is a little bit smaller then our first car and has better motor
(brushless). Size reduction achieved by the move from mini-ITX to BeagleBoard
makes it possible to pack all the electronic within this smaller car.

Figure 3: Main parts assembled together

Figure 3 illustrates how these parts are looking assembled together. On the
picture at the right hand side there are two connectors for the servo-controllers
(steering and acceleration) where signal wire is connected to the AVR digital
outputs available on the Trainer Board. In addition, we connect the AVR to
the BeagleBoard’s 12C bus to send control commands from BeagleBoard to the
AVR which acts as a slave on the bus. As was mentioned above, we are planing
to use I12C enabled motor controllers for the quad-copter and that is why we
want to use I12C to make as less changes as possible in the on-board software
when we will switch to these motor controllers.

In addition, there is a separate power supplied for the servos. Initially, we
were using the 5V power supplied by the trainer board which is in turn supplied
by the BeagleBoard. It does not work because of the strong noise generated by
servos. Video quality was very affected by this noise and sometimes even the
whole USB subsystem. That is why, separate power for servos is necessary.

3 Software architecture description

The whole system software has two main tasks: a) deliver video stream and sen-
sor data from the vehicle to the remote driver and b) deliver control commands
from the driver to the vehicle software and drive vehicle actuators. We assume
that the delivery happens over the Internet where it is typical to have two fire-
walls (and/or NATS) on the client and server side. The Figure 4 represents this
setting.

Figure 4: High level system overview.

To provide this functionality two main modules are required: a) driver ap-
plication which we are calling cockpit and b) vehicle on-board application which
we will be simply calling vehicle. In addition, to perform firewall traversal in the
secure and efficient way, additional application is required on the server side.
To address all communication aspects we are using ZeroC Ice middleware for all
our communication needs. The main reasons for this choice are the following:

Dramatically reduce complexity when implementing complex biderection
communication.

Transparently handles cross-platform issues such as endianess when com-
municating between vehicle application on ARM (BeagleBoard) and cock-
pit application running on Intel x86 platform.

There are two versions of Ice. IceE (E stands for embedded) which has
reduced footprint and easier to cross-compile which makes it a great choice
for embedded vehicle application. The complete version provides the full
set of functionality which we are using for cockpit application. These
versions are compatible with each other on communication protocol level.

Very easy to change the communication protocol. For example, UDP is
preferred choice for video transmission. However, it is much harder to
solve firewall and NAT related issues with UDP. That is why, in such
cases TCP might be preferred. If high security level is required, then SSL
encryption might be necessary. Changing between UDP, TCP or SSL is
the matter of change endpoint description in the configuration file.

Ice provides special service application called Glacier which solves fire-
wall/NAT related problems. In this document we will not describe how
Glacier works. Ice documentation could be consulted for more informa-
tion.

e Great scalability in case of many network clients.

The following sections provides more details on vehicle and cockpit applica-
tions architecture.

3.1 Vehicle on-board application

The vehicle on-board application (we will call it vehicle in the following text)
has the following responsibilities:

e Receive control commands (such as steering and acceleration) from remote
driver

e control connected accelerators based on the received commands. In par-
ticular, send motor control commands over I12C interface.

e Capture video from camera and compress it in real-time.
e Send captured video to the cockpit application.

e Collect statistic about network bandwidth to perform adaptation in case
of changed network conditions. In particular, the frame size could be
reduced, compression rate could be increased or even frame rate could be
reduced if the bandwidth is not enough to deliver the video on time.

3.1.1 Networking with Ice

We are using ZeroC Ice for communication purposes. The following fragment
represents the most important part from the interface definition file.

interface StreamReceiver {

["ami"] void nextChunk(ByteSeq chunk) ;
idempotent QoSReport getQoSReport();
I

interface MotorControl {
idempotent void setDuties(MotorDutySeq duties);
+;

interface RemoteVehicle {

idempotent MotorControl* motorControlInterface();
idempotent void addStreamReceiver(StreamReceiver *callback);

3
Vehicle application implements two of these interfaces:

o RemoteVehicle is the entry point to the vehicle functionality and can be
used to request the MotorControl interface as well as setting remote call-
back interface to receive compressed video stream.

e MotorControl interface allows remote access to the available motors. Re-
mote application can set the motor duty in percents with just one remote
invocation passing the sequence of required motor duties as a parameter.
Vehicle application implements this interface. When required duties are
received, the percentage is converted into actual motor control commands
and sent over I12C to the motor controller. Currently, we are using Trainer
Board connected to the BeagleBoard over I2C interface to control motors.
The software on Atmel micro-controller on the Trainer Board is responsi-
ble for receiving 12C commands and convert them to PWM signals which
control the main car motor and steering servo.

o StreamReceiver is the callback interface which should be implemented by
the cockpit application and used by vehicle to send compressed video
frames as a chunks of binary data.

3.1.2 Video handling with Gstreamer

Vehicle application uses Gstreamer to perform video capturing, compression and
handing the compressed stream over to Ice for transmission over the network.
We are using Gstreamer’s AppSink element to get access to the compressed
and ready to transmit data. When the new chunk of date is available from the
Gstreamer pipeline, the local callback function is invoked providing the pointer
to the video data. In turn, vehicle application invokes remote callback interface
to transmit the data over the network to the cockpit application.

Remote interface invocation is performed using Ice Asynchronous Method In-
vocation (AMI) which makes possible to collect more information about buffer-
ization and transmission performance. This information is used to to trigger
any QoS adaptation actions if necessary.

The following Gstreamer pipeline is used on the x86 Linux or Windows for
development and testing purposes:

videotestsrc is-live=true ! video/x-raw-yuv,width=640,height=480,
framerate=30/1 ! videoscale name=gos-scaler !

capsfilter name=qos-caps
caps=video/x-raw-yuv,width=640,height=480 !

x264enc byte-stream=true bitrate=300 ! rtph264pay pt=96 !

appsink name=icesink

Videotestsrc element could be replaced with for example v412src to capture
video from video camera. The following pipeline is used when we run vehicle
application on the BeagleBoard and uses TI’s h264 codec which runs on DSP
and that is why can compress video in real-time on such low power device:

v41l2src always—-copy=FALSE !
video/x-raw-yuv,width=320,height=240 ! ffmpegcolorspace !
video/x-raw-yuv,format=(fourcc)UYVY !

TIVidencl codecName=h264enc engineName=codecServer
bitRate=30000 genTimeStamps=TRUE byteStream=TRUE !
rtph264pay pt=96 ! appsink name=icesink

The used pipleline is not hard-coded but specified in the configuration file.
It is very useful when experimenting on BeagleBoard because of long cross-
compilation development cycle.

Since Gstreamer and Ice both have their own event loops we decide to run
them in separate threads. Since both Gstreamer and Ice can also run multiple
threads, it is very important to make proper synchronization between threads
to prevent data corruptions and deadlocks. This is the most tricky part of the
vehicle application.

3.2 Cockpit application

Cockpit application is intended to serve two main needs: a) receive and display
sensor data such as for example video stream and b) capture and transmit con-
trol commands such as for example steering and acceleration from driver to the
vehicle on-board software. Current version in particular supports video stream-
ing and can transmit steering and acceleration commands. To issue control
commands, keyboard and joystick could be used. From the software perspec-
tive, any joystick is visible as a set of axis and buttons. For example, steering
wheel with pedals and a set of buttons is visible as a set of axis representing
wheel and pedal angle. Buttons are sending notifications if pressed and re-
leased. This view makes it possible to support wide range of input devices such
as for example conventional joysticks as well as game-oriented steering wheels
with pedals. Based on our own experience, using steering wheel is the most
convenient way to driver the car (which is somehow obvious :-)).

To implement requirements mentioned above, the following subsystems need
to be implemented:

o Communication to receive sensor data and transmit control commands.
Similar to the vehicle application, we are using Ice for communication
purposes.

e Visualization to display received video stream, provide visual feedback
when the driver issued control commands and display different kinds of
textual messages for the driver. For this purposes we are using OpenGL
together with certain windowing functionality available from SDL library.

e Video decoding to decode incoming video stream and prepare the raw
frame data for displaying. We are using Gstreamer for video decoding
purposes.

e Input hardware support to receive control commands from driver. Here we
are relying on the corresponding functionality available in SDL library.

Integrating all the technologies mentioned above is not trivial. One of the
big sources of complexity are so-called event loops. In particular, Ice required
own event loop to to handle networking, Gstreamer requires own event loop
to implement notification mechanism between decoding pipeline elements and
SDL requires event loop to interface with windowing and operating subsystem.
Each event loop is implemented as a blocking function which should be called
after initialization and remains blocking until the application shut down. In our
case, multiple event loops from different technologies should run simultaneously
or be integrated with each other.

Each technology mentioned above provides certain mechanisms to integrate
“foreign” event loops. However, such integration will require interventions at
the very low level and either very complicated or impossible at all. That is why

we decide to run each event loop in own thread (or thread pool) and provide
inter-thread communication infrastructure to exchange data between multiple
subsystems. Figure 5 provides high-level overview of the cockpit subsystems
and their interconnections.

Figure 5: Subsystems in the cockpit application.

In addition to the SDL, Ice and GStreamer thread, we are using separate
thread for connection establishment. This thread is periodically trying to ob-
tain the reference to the remote vehicle object. If connection could not be
established, then the thread sleeps for a couple of seconds and tries again.

When communication subsystem receives the chunk of data from the vehicle,
it stores the data into thread safe queue which is also accessible by Gstreamer
thread and video decoding subsystem. When decoding pipeline is running,
we are receiving callbacks via user defined function when decoder needs more
data. Our implementation of this function reads the next available data chunk
from the queue populated by communication thread. We are using GStreamer’s
appsrc element to register required callbacks and supply video decoding pipeline
with data.

As soon as the video decoding subsystem (Gstreamer pipeline running in the
own thread) got enough data and the new frame is decoded, another custom
callback function is invoked. We are using GStreamer’s fakesink element to
register our callback. The implementation of this function calls directly the
visualization subsystem to notify about new frame availability.

The visualization subsystem (running in SDL thread) makes a copy of the
new fame and sends the asynchronous event to trigger repainting process in
the thread safe way. When event is dispatched, the video texture is updated
with newly arrived data and drawn on the screen using corresponding OpenGL
API. This drawing mechanism provides good performance and provides great
flexibility for 3D artists to define the whole cockpit the way they like.

When the driver issues control command by means of keyboard or joystick,
they are received by the SDL thread and made available for the application in
form of events. These events are handled by corresponding callback functions.
Received control data is then converted to the commands expected by vehicle.
For example, key press events are counted and the desired acceleration and
steering direction is calculated. This values are then transferred to the vehicle
application using communication subsystem. In addition, the visualization sub-

system is notified to trigger repainting for on-screen objects (like steering wheel
and tachometer) to provide the driver visual feedback for his actions.

The following subsections describe each particular subsystem with more de-
tails.

3.2.1 Communication subsystem

Cockpit application serves as a network client and server at the same time.
When sending control commands, it acts as a client for the vehicle application.
For this purposes, cockpit uses interfaces described in Section 3.1.1 and imple-
mented by vehicle application. At the same time, to receive the video stream,
cockpit application implements remote callback interface which is defined as
following:

interface StreamReceiver {

["ami"] void nextChunk(ByteSeq chunk) ;
idempotent QoSReport getQoSReport();
3

Vehicle application calls neztChunk() function every time the new data chunk
becomes available from video encoder. When the data chunk is arrived over
the network, communication subsystem makes this data available for the video
decoding subsystem using special source element called appsource.

3.2.2 Visualization subsystem

There are several parts which need to be visualized in the cockpit applica-
tion: static background, video frames, steering wheel, tachometer (indicated
the acceleration requested by the driver) and notification area to display error
messages and other types of information for the driver. For this purposes, we
decided to create 3D model which consists of the objects which could be used to
point where in 3D scene certain dynamic object should be positioned or could
be manipulated to reflect current application state. In particular, the following
objects are important for the cockpit application:

e Video plane is a square plane object and is used to place video frame on
it as a texture.

o Steering is the 3D object which represents the steering wheel. This object
is rotated around the central axis to provide the feedback when driver
issued steering commands with keyboard or joystick.

e Tachometer arrow used to show how much acceleration is requested by
the driver in the range of 0-100%. The arrow is rotated at run-time cor-
respondingly.

e Message area is a square plane which is used to find the place in the
3D scene where to draw the message text. Text is drawn slightly raised
(towards the viewer) and the plane plays the background role.

To define all the objects mentioned above, we are using Blender 3D modeler.
Each object of interest has a name which is also known by the visualization

10

subsystem. At run-time, objects of interest are found in the whole model and
then manipulated by the cockpit application.

We decide to use Wavefront OBJ file format which is widely accepted as the
data interchange format between different 3D modeling applications. For this
purposes we developed separate ObjReader library which is also freely available.
Blender can export 3D geometry and materials in OBJ/MTL format.

3.2.3 Video decoding subsystem

Video decoding subsystem is responsible for building and running GStreamer
video decoding pipeline and communicate with communication and visualization
subsystem to receive compressed data and provide decoded video frames corre-
spondingly. We are using appsrc element to feed the pipeline with data received
by communication subsystem and fakesink to get access to decoded frames for
visualization in 3D scene representing driver cockpit. Since GStreamer requires
GLib’s main loop running, we decide to dedicate the separate thread for it.

To makes it easier to experiment with different decoding pipelines, we read
the actual pipeline from configuration file and using GStreamer’s ability to build
pipeline dynamically from textual definition. The following is one of pipelines
we are currently using:

appsrc ! application/x-rtp, encoding-name=(string)H264,
payload=(int)96 ! rtph264depay !

video/x-h264 ! ffdec_h264 ! videoscale ! videorate !
video/x-raw-yuv, width=640, height=480, framerate=30/1 !
timeoverlay halign=right valign=top ! clockoverlay halign=left
valign=top time-format="%Y/%m/%d %H:%M:%S" ! ffmpegcolorspace !
video/x-raw-rgb, bpp=24, depth=24 ! fakesink sync=1

This pipeline receives h264 compressed video stream, makes appropriate
color conversion, scaling and adds date and time as a video overlay. More
pipelines and other cockpit configuration parameters could be found in the
misc/driverconsole.config file. For example, it is possible to make the decoding
pipeline more general with respect to used encoding algorithm by substituting
ffdec_h26/ element with more general decodebin2 element.

3.2.4 Input hardware support subsystem

To obtain input from the driver, keyboard and joystick is currently supported.
Since most of the steering wheel and pedal devices are also viewed by the oper-
ating system as a joystick with corresponding set of axes and buttons, they are
also supported. We are relying on the abstraction level and corresponding API
provided by SDL to deal with hardware in the portable way.

In particular we are reacting on corresponding events sent by SDL to indicate
that the user pushed the key, rotated the steering wheel or pushed the pedal.
This events are processed to calculate the motor control commands which are
represented as a desired duty of the corresponding actuator in percent. For
example, to drive straight forward, i.e. position the forward wheels straight
forward, the 50% of servo duty should be requested. Correspondingly 0% or
100% should be requested to make hard left or right turn.

11

The same scheme is used for acceleration. However, the percentage is inter-
preted slightly different by the vehicle on-board application. Duty from 0% to
50% is used to drive backwards where 0% is the fastest backwards speed and

51% to 100% is used to drive forward with 100% corresponding to maximum
forward speed.

12

