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1 Introduction

1.1 Active assistance by powered robotics

Powered robotic exoskeletons for assistance of human locomotion are currently under development
for military and medical applications (Hal5, ALTACRO, LOKOMAT [1]).

(a) (b)

Figure 1: (a) Exoskeleton, with three actuators per leg (b) The Sarcos exoskeleton with hydraulic actuators
at the joints (Huang (2004)) [2].

However, the energy requirements for such devices is important and becomes an obstacle for
practical applications.

1.2 Passive assistance

It has been observed in several animals that legged locomotion is energy efficient, where the ar-
rangement of muscles and tendons contributes to efficient locomotion. For instance, horses use long
tendons in their legs to store elastic energy during running, resulting in up to a 50% decrease in
energy cost per kg of body weight compared to humans.
Therefore, passive assistance systems were designed in order to reduce metabolic energy cost. Sys-
tems attached at the joints like elastic orthosis were already studied. For instance, a system working
with a torsion spring placed in parallel with the knee was introduced in [3]:

(a) (b)

Figure 2: Prototype of elastic knee brace in (a) extented and (b) flexed positions [3].

It would result in a reduction of biological knee stiffness and muscle activation of the knee ex-
tensors.
The starting point of the study about this system was to use a torsion spring which increase the
stiffness about the ankle, which would give a very different muscle activation, as showed a similar
experiment. A light-weight custom-fit knee brace have been successfully designed, and can provide
a rotational stiffness that is large enough to create a felt effect.
This provide information about adaptive neuromuscular behavior while hopping with knee joint
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augmentation. However, for the time being, there is not enough data points to conclude about the
effects on the human neuromuscular system.

The present project focused on exotendons spanning one or more joints. These exotendons would
have the same behavior as traction springs and with a specific arrangement, create an exoskeleton
for the human body legs.

1.3 Goals

The first objective of my work was to reproduce the results obtained in the literature regarding
the optimization of different designs of the exoskeleton, and in particular the results presented in
the paper ”Exotendons for assistance of human locomotion” [4]. To validate the paper results with
another optimization method,this project focused on the heuristic process called Particle Swarm
Optimization (PSO), instead of Simulated annealing, as used in [4].
Secondly, still with PSO, the optimization was done for different gait cycle speeds in order to (i)
highlight the consequences on the parameters of the exoskeleton, (ii) and possibly find a design
which is robust to different gait speeds.
Finally, a simulation of the gait was done on the software Webots (http://disal.epfl.ch/page-32502.html)
to see if the contribution of the exoskeleton would provide the active torque reduction expected, in
a dynamic environment.

2 Results from the literature

The goal of this part is to overview the results obtained by van den Bogert [4] concerning conceptual
exoskeletons. The author suggested a system of artificial exotendons made of a rubber-like material,
with different configurations that were compared thereafter, in order to determine which one is the
most efficient. An exotendon is attached with pulleys to one, three or six leg joints, depending on
the configuration.
This study was focused on the sagittal plane only 3.

Figure 3: (a) Description of the anatomical planes and (b) Diagram of the leg shown in the rest position (0
deg at all joints) with the positive direction indicated [5].

Data were computed using a children gait [6]. Four possible exotendons configurations with
increasing design complexity were considered (figure 4).

Configuration A: a one-joint exotendon in each leg, attached to the ankle. Two pulleys were
necessary therefore (one pulley for each the two exotendons).
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Configuration B: a three-joint exotendon in each leg, crossing the hip, knee and ankle. This
design required six pulleys (three pulleys for each of the two exotendons).

Configuration C: a six-joint exotendon, crossing all joints in both legs and its twin. So we had 12
pulleys in this configuration (six pulleys for each of the two exotendons).

Configuration D: two six-joint exotendons, each crossing all joints in both legs, and their twins.
24 pulleys were required for this design (6 pulleys for each of the four exotendons).

Figure 4: Possible configurations [4].

2.1 Method

Each exotendon was modeled by a spring attached at one joint (configuration A), or more joints
(configurations B, C and D) with pulleys.
Exotendon length L is a linear function of six joint angles:

L(t) = L0 −
6∑
i=1

riϕi(t) (1)

where L0 is the exotendon length when all joint angles are zero and ri is the moment arm at joint
i. The convention used is that joint angles increase during an anterior swing of the distal segment
of the joint (figure 3b). Therefore, if ri ≥ 0, it means the exotendon runs anterior to the joint i and
conversely, if ri < 0, it means that the exotendon runs posteriorly (figure 4b).

The force created by an exotendon is therefore:

F (t) =
{

0 if L ≤ Lslack
k[L(t)− Lslack] if L > Lslack

(2)

with k the stiffness of the exotendon and Lslack its slack length.
So, L(t)−Lslack = L0−

∑6
i=1 riϕi(t)−Lslack, which can be written L(t)−Lslack = −

∑6
i=1 riϕi(t)−

(Lslack−L0). As the slack length and L0 are constants, we can replace their difference by one single
parameter. It will be Lslack setting L0 = 0. Thus, the moment generated at joint i is Fri. k takes
an arbitrary value, which will be 100kNm−1. Assuming that we have N exotendons, the residual
moment Ri required from the muscles crossing joint i is:

Ri(t) = Mi(t)−
N∑
j=1

rij .Fj(t) (3)

with Mi(t) the total joint moments during unassisted walking, known from an inverse dynamical
analysis [6].
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2.1.1 Moment optimized

One of the two optimization criteria was the one based on minimization of the average residual joint
moments (equation 3), over all joints and over the duration of the gait cycle:

Cmom =
1

6T

6∑
i=1

∫ T

0
|Ri(t)|dt (4)

with T the duration of the gait cycle.

The following array gives the values of the radii and slack lengths which were obtained for the
different configurations, using simulated annealing as optimization method:

Leg Right Left
Parameter [mm] rankle rknee rhip rankle rknee rhip Lslack

A -60.20 N/A N/A N/A N/A N/A 6.54
B -34.63 0.23 21.18 N/A N/A N/A 7.77
C -34.31 -0.61 21.23 0 -5.63 -8.08 -4.04

D exotendon 1 -23.45 4.25 7.77 21.91 0.65 -5.24 -24.34
D exotendon 2 -15.68 -11.92 -7.60 -5.88 -4.37 10.70 -11.53

The forces and average residual moments obtained are represented on the following graphs:

Configuration A Configuration B Configuration C Configuration D

Figure 5: Moments and residual moments at the joints, and forces generated by the exotendons.

The joint moments on the right leg are shown on the top row (blue: ankle, green: knee, red:
hip) with the residual moments as dashed lines. Exotendon forces are shown on the bottom row,
with the twin exotendon represented by a dashed line.

2.1.2 Power optimized

The second optimization criterion was based on minimization of the average mechanical power
generated by the residual moments:

Cpow =
1

6T

6∑
i=1

∫ T

0
|Ri(t)ϕ̇i(t)|dt (5)
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ϕ̇i(t) was calculated by analytical differentiation with a 3-point central difference method.
The following array gives the values of the radii and slack lengths which were obtained for the
different configurations, using the same optimization method:

Leg Right Left
Parameter [mm] rankle rknee rhip rankle rknee rhip Lslack

A -49.83 N/A N/A N/A N/A N/A 1.04
B -32.85 12.76 33.06 N/A N/A N/A -1.55
C 13.79 -2.74 -10.05 -16.12 3.22 10.87 -89.62

D exotendon 1 -19.04 -9.77 -4.69 -0.17 -5.67 10.89 -12.30
D Exotendon 2 -25.11 3.98 7.47 24.18 -2.18 -6.82 -75.33

The forces and average residual powers obtained are represented on the following graphs:

Configuration A Configuration B Configuration C Configuration D

Figure 6: Moments and residual moments at the joints, and forces generated by the exotendons.

The joint powers on the right leg are shown on the top row (blue: ankle, green: knee, red: hip)
with the residual powers as dashed lines. Exotendon forces are shown on the bottom row, with the
twin exotendon represented by a dashed line.

2.2 Influence of the complexity of the design

The results of [4] show that the more complex the configuration, the better the minimization.
Moreover, as the link between the moment and the power is M = PΩ, improving one criterion also
improves the other one.

Moment optimized Power optimized
Design Cmom(Nm) Cpow(W ) Cmom(Nm) Cpow(W )

A 11.17 18.68 11.97 18.18
B 7.56 12.26 9.06 10.64
C 7.04 12.09 7.57 9.73
D 4.08 5.66 4.37 5.18
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(a) (b)

Figure 7: (a) Average residual joint moment and (b) average residual joint power according to the design.

3 Heuristic method: the PSO algorithm

To optimize the different designs with the two criteria (residual moment and residual power), van
den Bogert used Simulated Annealing, a global optimization of statistical functions with simulated
annealing. In this project, another heuristic process was used to figure out the best parameters
for each design: the PSO (Particle Swarm Optimization) algorithm. The parameters are the slack
lengths, varying between -0.3m and 0.3m, and the moment arms (radii of the pulleys), varying
between -0.1m and 0.1m. The objective of this part is to put to test the same configurations as van
den Bogert, but by using PSO, in order to validate the different optimizations. Alternatively, better
solutions could be found with this algorithm, showing that the corresponding results reported in [4]
were only local minima.

3.1 Recap about Simulated annealing

The Simulated annealing is a method which was independently described by Scott Kirkpatrick, C.
Daniel Gelatt and Mario P. Vecchi in 1983, and by Vlado Cerny in 1985.
It is a generic probabilistic metaheuristic (optimization algorithm to figure out hard optimization
problems) for the global optimization problem of applied mathematics, namely locating a good ap-
proximation to the global optimum of a given function in a large search space.
Metaheuristics optimize through the neighborhood approach and differ from heuristics in that they
can move through neighbors that are worse solutions than the current solution.
The reason for this is that the search can’t stop in a local optimum and in theory, if the metaheuris-
tic can run for an infinite amount of time, the global optimum will be found [7].

Simulated annealing method is an algorithm based on the analogy with the thermodynamic
phenomenon of the metals annealing.
In this process, first the metal is heated at a high temperature, the atoms are then agitated. Sec-
ondly, the metal is cooled progressively in order to reach a state as close as possible to the crystalline
state, which is the energetic global minimum.
The algorithm sticks to the same idea: an initial high temperature is selected and an initial particle
is placed in the set of solutions. Then, as the temperature decreases, the particle moves, trying to
find a smaller energy state until the final temperature is reached [9].
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The algorithm runs the following steps [8][9][10]:

1. Initialization: a very high starting temperature (T0) and initial placement m0 ∈M , M being
the finite set of solutions, are selected.

2. Movement: Randomly, a new point (m1) is selected in the neighborhood of the original point.

3. Performance calculated: the change is computed in the performance due to the move made.
Let cost function f to be optimized.

4. Choice: depending on the change in performance, accept or reject the move. The probability
of acceptance depends on the current ”temperature”. This means that If f(m1) ≤ f(m0), m1

is accepted as new initial placement. If a candidate mk+1 is worse than its predecessor mk, this
means f(mk+1) > f(mk), mk+1 is accepted with probability pk and is rejected with probability
1 − pk where pk = e−(∆f/tk), tk being the temperature at the step k (number of candidates
already generated) and ∆f = f(mk+1) − f(mk). More precisely, if pk > r, r being a number
generated randomly in the range [0, 1], the candidate becomes the new initial placement. The
sequence (tk), called cooling strategy, will be made to converge decreasingly to 0. Therefore, as
the number of steps tends to infinity, the probability to accept equal deteriorations of solutions
decreases and tends to 0.

5. Updating and repeating: the temperature is decreased according to a ”cooling schedule” and
the algorithm goes back to the step 2. The process is done until the final temperature (”Freez-
ing Point”) is reached.

Behavior of the algorithm

• The smaller ∆f , the higher the acceptance probability.

• The higher t, the higher the acceptance probability.

• As t decreases, acceptance probability decreases.

• The faster t decreases, the smaller the probability to reach the global minimum.

Note
To find the best optimization of the different designs, van den Bogert set the temperature

reduction rate to 1% for each 1000 cost function evaluations. The cost function was evaluated 30
million times before the algorithm stopped.
He performed the algorithm five times for each optimization to verify that the global minimum was
found; the algorithm always found the same optimal design parameters.
However, he found multiple solutions for the configuration D that had nearly the same cost function
values.

3.2 PSO algorithm

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart [12]. It is a computa-
tion technique inspired by social behavior and movement dynamics of insects, birds and fish. It is
a global gradient-less, stochastic search method. Unlike SA, in PSO, several particles are initialized
through the whole space of the parameters, and each one has a random velocity. At each run of the
algorithm the particles move and each one try to find a better position taking its best performance
and the best performance among all the particles account. Therefore PSO uses collaboration to
drive the evolutionary process.
Using details provided in ”Particle Swarm Optimization, Introduction” [11], and ”Eberhart and Shi,
Comparing inertia weights and cons” [12], an implementation of PSO in Matlab was producted.
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The algorithm runs the following steps:

1. First, a population of particles is created randomly in the parameters space. Here, this means
that each particle will have initial slack lengths and moment arms representing their position.
Furthermore, each particle has an initial velocity, also randomly defined.

2. Each particle position is evaluated according to the desired goal. It means that the average
residual joint moments (or the average mechanical power) will be computed for each particle’s
position.

3. If the current position of a particle is better than its previous best position, it is updated. This
means that if the particle’s current position gives a smaller average residual joint moment (or
average mechanical power), it will replace its previous best position.

4. Determine the best particle, i.e. the particle giving the best optimization.

5. Update particles′ velocity according to the following equation:

vt+1
i = w.vi(t)︸ ︷︷ ︸

inertia

+R1(c).(pi(t)− xi(t))︸ ︷︷ ︸
personal influence

+R2(c).(g(t)− xi(t))︸ ︷︷ ︸
social influence

(6)

with vt+1
i the new velocity, vi(t) the previous one, xi(t) the current position, R1(c) and R2(c)

random numbers in the range 0 to c, pi(t) the best previous particle’s position, g(t) the best
previous position among all the particles and w the inertia weight, which decreases usually
linearly from about 0.9 to 0.4 during a run. c was fixed at the value 1.49445 [12], which was
found iteratively and gives good performances. Thus, the social and personal influences are
equal.

6. Move particles to their new positions according to

xt+1
i = xti + vt+1

i (7)

7. Go to step 2 until stopping criteria are satisfied, i.e. until the minimum residual moment/power
is found.

To keep the average residual moment of each particle and their best performance (the minimum
average residual moment they reached), a matrix composed of two rows and of the number of
particles as number of columns is used: Cmom.
For example, below, Cmom has 10 particles and the one which has the best perforamance is the
seventh one.

Figure 8: Matrix representing the criterion of minimization of the average residual moment .
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A similar matrix to Cmom is used to analyse the averaged residual power: Cpow.

Behavior of the particles

• ”Selfish”: The higher the inertia weight, the more the particles follow their own path.

• ”Conservative”: The higher the personal influence (R1(c)), the more the particles go back to
the position where they got their best performance.

• ”Follower”: The higher the social influence(R2(c)), the more the particles follow the best one
of all of them (go to the position of the best performance of the best particle).

3.3 Comparison of the two methods

3.3.1 Particle Swarm Optimization

Pros

• Few algorithm parameters.

• Easy in its concept and coding implementation.

• The trajectory of each particle is influenced by their best performance but also by the collective
information coming from the other trajectories.

• Low sensitivity of the algorithm (see part 3.5.4).

Cons

• Dependency on initial conditions(see part 3.5.3).

• Less efficient than Simulated Annealing to find best optimization.

3.3.2 Simulated annealing

Pros

• Ability to escape from a local minimum thanks to a neighborhood and the authorization to
degrade temporarily the cost function evaluated to try to find a better position.

• Statistically guarantees finding an optimal solution [13].

Cons

• The algorithm may require large amounts of computation time.

• Deemed difficult to fine tunes to specific problems [13].

3.4 Optimization

3.4.1 Moment optimized

To bring forward the way the algorithm converges toward the minimum, the graphs, representing
the average of all particles average residual momenta, the average of all particles minimum average
residual momenta and the global minimum average residual moment, are represented for the config-
uration A, as a function of the number of iterations, by using the matrix previously introduced 8.
To visualize the convergence in this configuration, 100 particles are initialized and 100 iterations are
done.
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Figure 9: Average of all articles averaged residual momenta.

(a) (b)

Figure 10: (a)Average of all particles minimum averaged residual moment and (b) minimum averaged
residual moment.

At the first iteration, the average residual moment of each particle is also considered as their
best performance, that is why the average of all the particles average residual momenta and the
average of all the particles minimum average residual moment are equal for the first iteration.
The best performance of a particle is replaced by its current average residual moment only if the
latter is better than its best performance. Therefore, iteration after iteration, the particlesáverage
residual moment can only be smaller, that’s why the graph 10a is decreasing. Similarly the graph
10b is decreasing because the minimum average residual moment is replaced only if a smaller mini-
mum is reached by a particle.
The first graph shows that the average of all the particlesáveraged residual momenta can be worse
after a bigger number of iterations. For example, after 39 iterations, the average was about 70Nm
whereas at the tenth iteration, it was about 15Nm. That means that even if the best performances of
the particles are overall better and better (figure 10a) during the run of the algorithm, some of them
go through by positions where their performance can be worse than previously. The movements of
the particles will be discussed in the section 3.5.3.
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I was able to converge to the same minimum as reported in [4] for all the configurations except
the configuration D.
These are the optimizations obtained:

Leg Right Left
Parameter [mm] rankle rknee rhip rankle rknee rhip Lslack

A -60.20 N/A N/A N/A N/A N/A 6.54
B -34.63 0.23 21.18 N/A N/A N/A 7.77
C -34.31 -0.61 21.23 0 -5.63 -8.08 -4.04

D exotendon 1 0 -7.36 -8.16 -34.01 1.29 21.05 -4.38
D exotendon 2 1.65 12.31 13.34 -29.63 7.31 4.80 4.11

3.4.2 Power optimized

I was able to converge to the same minimum than reported in [4] for the configurations A and B
but not for the C and D. For the configuration C, a sensitivity analysis was done to understand why
the PSO algorithm did not find the same minimum (see part 3.5.4).
These are the optimizations obtained:

Leg Right Left
Parameter [mm] rankle rknee rhip rankle rknee rhip Lslack

A -49.83 N/A N/A N/A N/A N/A 1.04
B -32.85 12.76 33.06 N/A N/A N/A -1.55
C 14.74 -2.24 -8.59 -21.97 4.39 11.91 -20.25

D exotendon 1 -24.03 17.55 4.47 0.12 12.90 25.05 7.20
D Exotendon 2 0 -8.94 -10.87 -42.09 10.07 27.65 3.43

3.4.3 Influence of the complexity of the design

Moment optimized Power optimized
Design Cmom(Nm) Cpow(W ) Cmom(Nm) Cpow(W )

A 11.17 18.68 11.97 18.18
B 7.56 12.26 9.06 10.64
C 7.04 12.09 8.37 9.82
D 4.29 7.02 5.34 5.52

(a) (b)

Figure 11: (a) Average residual joint moment and (b) average residual joint power according to the design.
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3.5 Analysis of the results

3.5.1 Parameters of the algorithm

During the test of the algorithm, I couldn’t find the minimum of the residual joint moment/power
each time I ran the program. To understand why the algorithm does not converge systematically,
the different parameters have to be analyzed:

1. The number of particles, that means the number of complex containing the radii and the slack
lengths.

2. The number of parameters defining a position (two for the configuration A for example, the
slack length and the radius of the pulley of the ankle)

3. The number of iterations of the algorithm.

4. The values of the parameters of the equation updating the velocity: the inertia and the range
of the random numbers.

To understand the influence of the number of particles and the number of iterations, we can
display the minimum average residual moment/power as a function of the number of particles and
iterations. Here, the algorithm is run each time for a new couple (number of particles ; number of
iterations). The following graphs show the results for the configuration A for the moment minimiza-
tion criterion. As the PSO is based on random numbers generation, the graphs obtained are only
examples and therefore give only the trends of the convergence. Other simulations were done and
gave similar graphs.

Figure 12: Minimum average residual moment depending on the numbers of iterations and particles.

Figure 13: Minimum average residual moment depending on the numbers of iterations and particles.
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We can see for example on the figure 12 that, with 20 particles, the convergence was better with
25 iterations (11.17Nm) than 80 (14.09Nm) (whereas with more iterations, the particles would be
supposed to have more ”time” to reach the position of the minimum average residual moment). We
can observe the same phenomenon in the other way: with 15 iterations, the convergence was bet-
ter with 40 (11.20Nm) particles than 90 (12.54Nm) (whereas with more particles, the convergence
would be supposed to be better thanks to a better social influence). As the inertia, the range of the
random numbers and the number of parameters defining a position are the same, there is another
parameter which influences the convergence, and which has to be random. Obviously, as the velocity
of each particle is updated randomly with the two coefficients R1(c) and R2(c), it could be a reason
for which the particles converge differently. Importantly the initial position of the particles, which
is also randomized, has an influence on the algorithm behavior.

To highlight the consequences of the initialization, we can study the movements of some particles
which would have been initialized in areas in which the fitness function landscape is different (see
part 3.5.3).

3.5.2 Systematic search

A systematic search of the minimum average residual moment in function of the position of the
particles was done in order to observe their behavior. As the configuration A has only 2 parameters
for the position of a particle (one slack length and one radius), it is easy to represent the systematic
search in this case with a 3D graph. It shows the minimum average residual moment depending on
the slack length (varying between -0.3 and 0.3) and the radius of the pulley of the ankle (varying
between -0.1 and 0.1).

Figure 14: Systematic search of the average residual moment for the design A.

We can notice significant differences depending on the couple (slack length ; radius) which give
different tendencies to the graph. To understand the curvatures, we can explore what is induced by
the variation of the two parameters.
First, we can see that for a positive slack length, the average residual moment is flat. Indeed, since
0 ≤ Lslack ≤ 0.3, it will be more likely to have F (t) = 0(L ≤ Lslack) than F (t) = k[L(t)−Lslack](L >
Lslack) (equation 2) especially when Lslack increases. We can notice this on the following figure which
represents the average force of the exotendon in function of the radius and the slack length:



3 HEURISTIC METHOD: THE PSO ALGORITHM 16

Figure 15: Systematic search of the average force for the design A.

Therefore, we will probably have R(t) = M(t) (equation 3), which is the residual joint moment
without contribution of the exotendons, 14.09Nm.
After, when the slack length decreases from 0 to -0.3 ,it will be more likely to have F (t) = k[L(t)−
Lslack](L > Lslack) and which will increase (figure 15). Moreover, the larger the radius, the larger
| rF |. Thus, | R(t) = M(t)− rF | will increase and therefore the residual average moment (equation
4) as well. This explains the two slopes in the negative part of the slack length (figure 14).
Finally, when r ' 0, L(t) = −rϕ(t) ' 0, so R(t) = M(t) − rF ' R(t) = 14.09Nm. This result
explains the hollow between the two slopes (figure 14).
Below we can see the area aound the minimum average residual moment, represented by a pink spot
(radius = -60.2mm and slack length = 6.54mm).

Figure 16: Systematic search of the average residual moment for the design A around the minimum.

3.5.3 Initial position

To examine the movements of the particles depending on their initial position, we recorded the
behavior of some particles if they were placed:

1. far from the minimum in a flat area (in black)

2. in a steep area (in green)

3. close to the minimum in a flat area (in purple)

4. around the minimum (in red)
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Theses places are indicated on the following graph, the white circle representing the minimum:

Figure 17: Initial areas of the particles.

On the graphs representing the movements of the particles, the red circle represents the position
for which the average residual moment is minimum and the diamonds are the initial positions of the
particles. Each way of a particle is represented by one color.
For clarity of the graphs, the positions of the particles are not displayed for each iteration.
The videos sequences are available on the website http://biorob.epfl.ch/page-53599.html.

Particles initialized far from the minimum in a flat area
For this case, 21 particles were initialized with a radius between 0.06 and 0.1m and a slack length

between 0.2 and 0.3m.
The locations of the particles are displayed at the first iteration and every 400 iterations until the
2000th.

Figure 18: Particles initialized far from the minimum, in a flat area.

The minimum was almost never reached, with an optimal performance of 14.09Nm (the perfor-
mance without contribution of the exotendons).
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Particles initialized in a steep area
For this case, 7 particles are initialized with a radius between 0.06 and 0.1m and a slack length

between -0.3 and -0.2m.

(a) (b)

Figure 19: Particles initialized in a steep area and (a) having reached the minimum (b) having not reached
the minimum.

Sometimes, the particles reached the minimum (figure 19a), but sometimes they got stuck, for
example between the two slopes(figure 19b); here their best performance was 13,84Nm.

Particles initialized close to the minimum in a flat area
For this case, 7 particles are initialized with a radius between -0.08 and -0.04m and a slack length

between 0.075 and 0.15m; 100 iterations were done. The locations of the particles are displayed at
the first iteration and every 20 iterations until the 100th.

The minimum was often reached (figure 20a).

Particles initialized around the minimum
For this case, 7 particles are initialized with a radius between -0.08 and -0.04m and a slack length

between -0.05 and 0.05m.
The locations of the particles are displayed at the first iteration and every 20 iterations until the
100th.

The particles always reached the minimum (figure 20b).

(a) (b)

Figure 20: Particles initialized (a) close to the minimum and (b) around the minimum.
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Interpretation
It’s true that the more there are particles, the better the social influence as the probability that

some particles goes to the minimum increases. After, the more the number of iterations, the more
the particles have time to reach the minimum.

However, in some cases the particles get stuck, as shown on figure 18, because in this area, the
average residual moment has no clear gradient.
In the case where the particles were on a steep place, they get off it quickly as the gradient is very
high, to reach an area where the average residual moment is much smaller.
Finally, in the case where the particles are initialized around the minimum, it’s easier for them to
reach the minimum.

Therefore, the initial position of the particles is important, and, more generally, the landscape
of the area where the particles move. Even though they are few, if one of them is close enough to
the minimum, it will be easier for them to reach it in a limited number of iterations. But they can
be unsuccessful if they got stuck in a local minimum, or in a flat area, where the average residual
moment is almost unvarying.
Regarding the part 3.4.1, we saw that the average of all particles average residual moment is not
necessarily decreasing. This can be explained by the fact that to reach a better position, the particles
can go through by local extrema, placed between the better position and the current one, which
increase their average residual moment.

3.5.4 Sensitivity of the configuration C, power optimized

For the design C, as said previously, the algorithm was not able to converge to the same optimization
than the one obtained in the literature for the average residual power.
Most of the time, the best result got was 10.27W and once the result was 9.82W (whereas the
minimum would be 9.73W).
To understand why it is difficult for PSO to find the best optimization, a sensitivity analysis of this
case was done.
Here, the sensitivity is the variation of the average residual power when the value of one parameter
(slack length or radius of a pulley) change:

S =
∆P
P

∆p
p

=
P−Popt

Popt

p−popt

popt

(8)

with Popt the average residual power and popt the value of the parameter, both obtained with the
considered optimization and P the average residual power after the change of the parameter and p
the new value of the parameter.
However, here, we simply displayed the average residual power after the change of parameters.
The range of variation of the parameters is p−popt

popt
= ±0.1 which means a range of variation of ±10%.

The analysis was done in the range [9.7W;14.5W].
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van den Bogert’s best configuration: Cpow = 9.73W

Leg Right Left
Parameter [mm] rankle rknee rhip rankle rknee rhip Lslack

13.79 -2.74 -10.05 -16.12 3.22 10.87 -89.62

Right ankle Right knee Right hip

Figure 21: Influence of the radii of the pulleys of the right leg on the average residual power.

Left ankle Left knee Left hip

Figure 22: Influence of the radii of the pulleys of the left leg on the average residual power.

Slack length Forces

Figure 23: Influence of the slack length on the average residual power and forces generated of the exotendons.
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My own best solution: Cpow = 9.82W

Leg Right Left
Parameter [mm] rankle rknee rhip rankle rknee rhip Lslack

14.74 -2.24 -8.59 -21.97 4.39 11.91 -20.25

Right ankle Right knee Right hip

Figure 24: Influence of the radii of the pulleys of the right leg on the average residual power.

Left ankle Left knee Left hip

Figure 25: Influence of the radii of the pulleys of the left leg on the average residual power.

Slack length Forces

Figure 26: Influence of the slack length on the average residual power and forces generated by the exotendons.
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The most attractive solution: Cpow = 10.27W

Leg Right Left
Parameter [mm] rankle rknee rhip rankle rknee rhip Lslack

0 -4.56 -4.79 -32.02 11.04 29.38 -1.27

Right ankle Right knee Right hip

Figure 27: Influence of the radii of the pulleys of the right leg on the average residual power.

Left ankle Left knee Left hip

Figure 28: Influence of the radii of the pulleys of the left leg on the average residual power.

Slack length Forces

Figure 29: Influence of the slack length on the average residual power and forces generated by the exotendons.

Interpretation
We see that the worse the minimization, the less sensitive the optimization.

This can be understood by observing that more sensitive solutions corresponded to smaller slack
lengths, and therefore, to higher forces provided by the exotendons (figure 15). Thus, very likely,
the system might become counterproductive, i.e. giving rise to the opposite effect as the energy (see
part 4.3, configuration C).
Also we see that the parameter changes involve the highest change of average residual power for the
best optimization.
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This analysis shows that PSO tends to converge to solutions which are less sensitive to parame-
ter changes, and therefore, which are more robust. This would be more useful in the case of an
implementation of such exosqueleton, as a counterproductive system would make no sense.

4 Work with data from an adult with different speeds

The objective of this part is to compute and compare similar optimizations performed for different
speeds.
To do this, we used the angles, moments and powers for the joints of an adult whose weight was 70
kilos. These data were found in the literature for three different gait speeds: slow, normal and fast
[14].

4.1 Determination of the sampling periods of walking

The times separating the successive angular positions of the joints for the different speeds were not
provided.
To determine them, the least squares approximation was used (see appendix). More precisely it’s
the time ∆moy separating three successive angular positions which was determined.

The following results were obtained:

∆moy,slow ' 53.8ms
∆moy,normal ' 44.9ms
∆moy,fast ' 39.1ms

The least square method was computed taking the three joints into account.

4.2 Optimization

4.2.1 Slow speed

Without contribution of the exotendons, the moment at the joints is 16.67Nm and the power 12.51W.
Using the same algorithm as before (PSO), the optimizations for the moment and the power give
the following results:

Moment optimized

Leg Right Left
Parameter [mm] rankle rknee rhip rankle rknee rhip Lslack

A -83.56 N/A N/A N/A N/A N/A 0.17
B -68.59 -3.93 9.55 N/A N/A N/A -3.49
C -59.63 -5.30 7.99 6.30 -3.94 -5.08 -7.75

D exotendon 1 1.00 3.48 -26.56 -24.48 27.90 31.61 20.49
D exotendon 2 -59.25 -6.76 6.79 8.11 -4.42 -4.12 -8.55

Power optimized

Leg Right Left
Parameter [mm] rankle rknee rhip rankle rknee rhip Lslack

A -75.76 N/A N/A N/A N/A N/A -1.77
B -61.65 -0.67 17.66 N/A N/A N/A -5.48
C 4.58 -3.83 -3.74 -62.21 -0.94 9.95 -6.77

D exotendon 1 -60.60 -4.50 6.21 8.43 -4.92 -4.59 -7.67
D exotendon 2 -21.32 20.58 36.95 -11.36 8.66 -4.02 13.20
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Comparison

Moment optimized Power optimized
Design Cmom(Nm) Cpow(W ) Cmom(Nm) Cpow(W )

A 8.29 9.03 8.93 8.93
B 6.59 7.82 7.87 7.46
C 5.65 6.13 6.13 5.70
D 3.83 3.55 4.45 3.35

Forces

Configuration A Configuration B Configuration C Configuration D

Figure 30: Forces, first row: moment optimized, second row: power optimzed. The twin exotendons are
represented by a dashed line.

4.2.2 Normal speed

Without contribution of the exotendons, the moment at the joints is 19.44Nm and the power 20.88W.
The optimizations for the moment and the power give the following results:

Moment optimized

Leg Right Left
Parameter [mm] rankle rknee rhip rankle rknee rhip Lslack

A -76.04 N/A N/A N/A N/A N/A 1.23
B -59.62 -1.78 13.95 N/A N/A N/A -3.87
C -50.46 -0.65 9.94 8.42 -7.10 -5.97 -10.12

D exotendon 1 -6.61 3.30 -33.85 -8.92 21.61 33.74 21.54
D exotendon 2 8.93 -7.57 -5.79 -51.00 -2.57 8.85 -10.46

Power optimized

Leg Right Left
Parameter [mm] rankle rknee rhip rankle rknee rhip Lslack

A -78.94 N/A N/A N/A N/A N/A -1.27
B -56.53 2.31 20.84 N/A N/A N/A -6.85
C 5.96 -6.71 -3.63 -56.72 3.59 10.85 -8.13

D exotendon 1 -56.62 0.74 9.21 7.84 -7.55 -3.00 -9.35
D exotendon 2 -11.50 23.41 37.03 -6.54 9.57 -28.30 23.88
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Comparison

Moment optimized Power optimized
Design Cmom(Nm) Cpow(W ) Cmom(Nm) Cpow(W )

A 12.04 17.14 13.65 16.61
B 10.32 14.92 12.02 14.02
C 8.33 11.65 9.10 10.80
D 5.93 7.44 6.89 6.99

Forces

Configuration A Configuration B Configuration C Configuration D

Figure 31: Forces, first row: moment optimized, second row: power optimzed. The twin exotendons are
represented by a dashed line.

4.2.3 Fast speed

Without contribution of the exotendons, the moment at the joints is 24.37Nm and the power 33.82W.
The optimizations for the moment and the power give the following results:

Moment optimized

Leg Right Left
Parameter [mm] rankle rknee rhip rankle rknee rhip Lslack

A -78.07 N/A N/A N/A N/A N/A 3.19
B -40.02 3.63 28.61 N/A N/A N/A -6.72
C 6.73 -8.66 -10.10 -38.50 2.89 21.36 -12.47

D exotendon 1 -76.04 -4.12 26.23 -0.51 -13.88 -15.14 1.23
D exotendon 2 -53.46 43.22 74.57 19.31 13.78 3.16 27.84

Power optimized

Leg Right Left
Parameter [mm] rankle rknee rhip rankle rknee rhip Lslack

A -89.83 N/A N/A N/A N/A N/A 2.45
B -50.69 7.42 31.46 N/A N/A N/A -4.64
C 23.59 -7.89 -13.88 -29.31 10.20 19.61 -21.30

D exotendon 1 -76.04 -4.71 22.51 -2.99 -14.30 -16.47 1.23
D exotendon 2 -37.90 31.47 62.32 15.47 9.94 6.23 18.04
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Comparison

Moment optimized Power optimized
Design Cmom(Nm) Cpow(W ) Cmom(Nm) Cpow(W )

A 19.64 32.52 20.58 32.23
B 14.36 23.91 14.94 23.14
C 12.09 21.82 14.58 18.61
D 9.94 13.53 10.21 13.01

Forces

Configuration A Configuration B Configuration C Configuration D

Figure 32: Forces, first row: moment optimized, second row: power optimzed. The twin exotendons are
represented by a dashed line.

4.2.4 Global optimization

Here, we looked for a configuration that would be a sort of compromise between the three speeds.
So the criteria of minimization were Cmom = 1

3(Cmom,slow + Cmom,normal + Cmom,fast) and Cpow =
1
3(Cpow,slow + Cpow,normal + Cpow,fast).

Moment optimized

Leg Right Left
Parameter [mm] rankle rknee rhip rankle rknee rhip Lslack

A -85.94 N/A N/A N/A N/A N/A 2.11
B -60.37 -1.40 17.82 N/A N/A N/A -4.70
C 5.29 -6.11 -6.92 -50.62 -0.80 13.51 -9.10

D exotendon 1 8.09 -8.02 -8.86 -49.46 -3.05 9.86 -10.35
D exotendon 2 -8.29 7.02 -6.46 -2.49 14.18 18.93 7.55

Power optimized

Leg Right Left
Parameter [mm] rankle rknee rhip rankle rknee rhip Lslack

A 75.68 N/A N/A N/A N/A N/A -1.49
B -55.82 3.17 22.90 N/A N/A N/A -5.29
C -55.84 3.94 17.28 2.33 -5.22 -5.32 -6.43

D exotendon 1 -2.23 13.25 22.56 -6.08 9.56 -5.54 8.13
D exotendon 2 6.61 -7.17 -8.97 -53.36 -0.98 10.38 -9.09
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Comparison

Moment optimized Power optimized
Design Cmom(Nm) Cpow(W ) Cmom(Nm) Cpow(W )

A 14.02 19.68 14.84 19.36
B 11.47 16.24 12.04 15.53
C 10.26 14.13 10.86 13.44
D 8.30 10.03 8.76 9.46

The forces which would be created by the exotendons with these optimizations at the different
speeds are:

Forces, slow speed

Configuration A Configuration B Configuration C Configuration D

Figure 33: Forces, first row: moment optimized, second row: power optimzed. The twin exotendons are
represented by a dashed line.

Forces, normal speed

Configuration A Configuration B Configuration C Configuration D

Figure 34: Forces, first row: moment optimized, second row: power optimzed. The twin exotendons are
represented by a dashed line.
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Forces, fast speed

Configuration A Configuration B Configuration C Configuration D

Figure 35: Forces, first row: moment optimized, second row: power optimzed. The twin exotendons are
represented by a dashed line.

4.3 Global performance of each optimization

To show the influence of each of the 16 optimizations (four configurations for the three speeds and
the global optimization), we can display the gain or loss of performance for the average residual
moment and power with each of the optimizations.
A performance gain means that the moment/power provided by the exotendons reduce the mo-
ment/power without assistance at the joints. Conversely, a loss of performance gives rise to the
opposite effect: the moment/power provided by the exotendons increase the moment/power at the
joints without assistance and therefore, make the walking harder.
To do this, we represent, for the moment, for one given configuration:

100.
∆M
M

= 100.
M −Minitial

Minitial
(9)

with Minitial the average residual moment without contribution of the exotendons at a specific
speed and M the average residual moment for a speed, with the design the best optimized for this
configuration.

By analogy, for the power, the formula is:

100.
∆P
P

= 100.
P − Pinitial
Pinitial

(10)

Thus, when these formulas are negative, there is a performance gain and when they are positive,
there is a loss of performance.
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Moment optimized

Configuration A Configuration B

Configuration C Configuration D

Figure 36: Performance of each optimized design for the moment.

Power optimized

Configuration A Configuration B

Configuration C Configuration D

Figure 37: Performance of each optimized design for the power.
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Interpretation
We can see that overall, the global optimization, i.e. for the three speeds is closer to the one

optimized at the normal speed.
Also we can notice that the only optimization which can become counterproductive is the configura-
tion C optimized for the fast speed, as it makes the walking harder at slow speed (power about 30%
higher than the initial one). This is linked to the forces of the exotendons which are high (between
1000N and about 3400N) compared to the others because of the very small slack length (-21.3mm)
(figure 15).

5 Simulation using Webots

A simulation with Webots was done in order to see the contribution of the exotendons in a more
realistic situation. The objective of this part is thus to see if the exotendons have the expected
effects, in a dynamical environment. This paves the way for more complex simulations.

5.1 Method

The positions and the moments of the joints which were used come from a subject, studied by the
University of Twente.
The average residual moment without contribution of the exotendons is 23.51Nm.
The skeleton implemented in Webots has to follow the reference positions of the joints. To do this,
moments are applied at the joints (feedback moments). They have to deal with the passive moment
of the joints which come from the ligamentous system of the legs, and are supposed to be smaller
when the moments provided by the exotendons are applied.
Then we can make an analogy with a control loop:

Figure 38: Control loop to follow the reference position of the joints.

with qref the reference positions of the joints which have to be followed, qact the actual positions
of the joints, Kfb the feedback moment gain, Mexo the active moment provided by the exotendons,
Mp the passive moment (which actually also depends on the actual positions of the joints) and G
the controlled system, i.e. the moment at the joints.
Thus, this moment is M = Mfb +Mexo +Mp, with Mfb = Kfb(qact − qref ) the feedback moment.
To compute the active moment provided by the exotendons, first the optimization of the different
configurations was done then it was implemented by using the same formulas as presented in the
first section.
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5.2 Optimization

Using PSO, the optimization was done for the average residual moment. The following results were
obtained:

Leg Right Left
Parameter [mm] rankle rknee rhip rankle rknee rhip Lslack

A -89.32 N/A N/A N/A N/A N/A 15.18
B -51.35 2.89 27.55 N/A N/A N/A 0.13
C 0.90 -2.78 -8.39 -50.98 4.50 26.27 2.83

D exotendon 1 -2.25 -5.48 -6.25 -41.78 14.90 15.39 17.57
D exotendon 2 -50.63 -1.26 17.96 2.51 1.22 0.04 -0.22

Design Cmom(Nm)
A 17.25
B 11.01
C 10.48
D 17.29

The optimization for the configurations A,B and C are consistant but for the configuration D
the result is not interesting as it is higher than the the optimization of the configuration C.
The parameters of the designs A, B and C were implemented in Webots.
Without contribution of the exotendons, the position of the joints, the passive and the feedback
moments are represented below:

Figure 39: Position of the joints, passive and feedback moments on the right leg, without assistance, during
one gait cycle.
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These are the results with the exotendons:

Configuration A

Figure 40: Position of the joints, passive, feedback and exotendon moments on the right leg, during one gait
cycle.

We can see that the moment provided by the exotendon reduce the feedback moment (it works
in the same way than the feedback moment without assistance), and that the reference position of
the ankle is correctly followed.

Configuration B

Figure 41: Position of the joints, passive, feedback and exotendon moments on the right leg, during one gait
cycle.
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Configuration C

Figure 42: Position of the joints, passive, feedback and exotendon moments on the right leg, during one gait
cycle.

For the configurations B and C, we can see that the moment provided by the exotendons goes
in the same way than the feedback moment at the ankle without assistance but the ankle position
is followed with difficulty as the feedback moment is fluctuant (in the range [12s;12.4s]). Moreover,
as there is a peak of feedback moment at the end of the gait cycle, the actual position of the joint
differs from its reference position.
For the knee there is nearly no assistantce provided by the exotendons. Indeed, the radii of the
pulleys attached to the knee are very small (array 5.2), so the moment also (equation 3). Moreover,
we can observe the same peak of feedback moment at the end of the gait cycle which disturbs the
following of the reference position of the joint.
For the hip the moment provided by the exotendons also goes rather in the same way than the feed-
back moment without assistance. However, compared to the case with no assistance, the feedback
moment is still significant and work in the other way.

Configuration A Configuration B Configuration C

Figure 43: Exotendon forces
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6 Conclusion

Upon completion of this project, I have fulfilled the specifications set by my supervisors, but the last
part regarding the simulation with the Webots could be depth. Some results regarding the first part
were different than the ones from the literature because Particle Swarm Optimization algorithm
couldn’t converge to the optimal optimization especially for the most complex designs.
During the project, my knowledge improved in the softwares Matlab and Latex and also I had the
opportunity to discover the simulation software Webots.
It was interesting to implement an algorithm such as Particle Swarm Optimization and see the
parameters which can influence the way the algorithm converges, and also the differences between
this heuristic process with the other method, the Simulated Annealing.
For the dynamical simulation part, the implementation of the configuration A seems to give good
result (position of the ankle correctly followed and good behavior of the feedback moment) and
therefore would be probably the most applicable design to implement in the real world, as starting
point.
The configurations B and C would be more difficult to implement. Indeed, the correct tracking of
the reference positions of the joints is the most important criterion to validate such exosqueleton
which does not have to prevent the gait cycle. Moreover, the feedback might not be comfortable to
provide by the person.
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8 Further Work

The next step could be to machine a complete exosqueleton, probably to design the configuration
A in order to try the exosqueleton in reality. Thus we could see if it really works as some points
were neglected as the movements of the joints in the coronal and transverse planes.
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Sampling perdiods by least squares approximation

We have to estimate ∆moy in the following equation:

∆i = ∆moy + εi (11)

where ∆i represents the time separating the previous angular position of the joint at the time i
and its next angular position and εi represents the error between ∆i and ∆moy.
Therefore, as we have 51 measures of the angle of the joints provided for the three gait cycles, we
have to minimize the following quantity:

χ2(∆moy) =
51∑
i=1

(∆i −∆moy

σi

)2
=

51∑
i=1

ωi(∆i −∆moy)2 (12)

where ωi = 1
σ2

i
are the weighting factors of the measures ∆i.

By differentiation, we can compute the minimum of χ2(∆moy) which is:

∆moy =
∑51

i=1 ωi∆i∑51
i=1 ωi

(13)

With the weighting factors corresponding to the powers generated at the joints, we obtain the
following formula:

∆moy =
∑51

i=1 Pi∆i∑51
i=1 Pi

=
∑51

i=1MiΩi∆i∑51
i=1 Pi

=
∑51

i=1Mi∆α∑51
i=1 Pi

(14)

where Pi is the power, Mi the moment and Ωi the angular velocity at the joint at the time i.
∆α = αi+1 − αi−1 is the angular difference between the next position and the previous one.
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