
1. Introduction

 Humanoid robot has recently attracted many robotics
research groups who developed a variety of solutions
dealing with its motion and behavior. In this direction,
Fujitsu has made significant efforts tending toward better
mechanical structure and real-time control software as
well, by making its first humanoid robot named HOAP-1
[1, 2], where user demands were considered as a prime
design concern.

 In this research, we focused on the biological based
models using the Recurrent Neural Network (RNN) the-
ory. Consequently, we have developed an RNN language
suitable for the programmers to reflect the biological
process. With this notation, the design of RNN circuits
becomes simple and easy to implement. The procedure
adopted to construct a large RNN circuit is reduced to a
simple connection of a set of basic RNN circuits, which
are found by solving simple ordinary differential equa-
tions. In contrast to the mathematical notations [3, 4], this
proposed language would be expected to express the
learning process of HOAP-1 easily, just by changing con-
nections, and their weights for a given RNN circuit. The
basic idea behind this proposed notation is taken from
neurobiology, where the spinal cord is assumed to solve
problems using 4 types of operations namely, summation,
multiplication by a constant, introduction of a time delay
constant, and switching. Accordingly, the proposed RNN
language is limited to these four operations. An example
of a basic pattern generator of sine oscillation can be ob-
tained by a special coupling of two neurons. Using this
sine pattern generator, it is possible to generate the Cen-
tral Pattern Generator (CPG) of HOAP-1.

 The rest of this paper is organized as follows: Next
section presents the proposed RNN language. Section 3
describes some basic RNN circuits. Section 4 explains
how to construct the CPG of HOAP-1, how to compen-
sate gear backlash, and how to generate a pitching pattern.
Finally, section 5 presents our conclusion.

2. Proposed RNN Language

2.1 Mathematical model of a neuron
 The proposed language is a kind of ML-Style language,
which is inspired from a biological process . At first we
define the mathematical model of a single neuron shown
in Fig.1.

∑=+
j

jiji
i

i ycy
dt
dy

ε , (1)

where yi is the output of neuron i,εi is a time delay con-
stant, and yj is the output of neuron j that represents an
input of neuron i through a weighting factor cij. Notice
thatεi can be interpreted as the rise time constant of a
step input [3].

 C1

C2

C3

yi

Fig. 1 Representation of a single neuron

2.2 Basic elements

 To create the RNN language, we define 4 basic ele-
ments summarized in Fig.2, which are neuron, wire, ca-
ble-C, and cable-W. Their definitions are stated below

(a) (b) (c) (d)

Fig. 2 Basic elements of the proposed RNN algorithm
(a): neuron, (b): wire, (c): cable-C, and (d): cable W

2.2.1 Neuron

 The following is how to create a neuron with a time
delay constant e and initial value V0,

var a(e) = V0;

Recurrent Neural Network Language for Robot Learning
Riadh Zaier *, Fumio Nagashima **

* Fujitsu Automation LTD, ** Fujitsu Laboratories LTD.

Abstract － Recurrent neural network has been used in wide range of applications based on traditional pro-
gramming language such as C. However, when it comes to complex system, such as a humanoid robot, it is
hard for these languages to generate the motion pattern. In this paper, therefore, we present an RNN lan-
guage, suitable for the programmer to reflect the biological process, easy to implement, and it can fit well the
learning process.

Key Words: Recurrent Neural Network RNN, Central Pattern Generator CPG, Humanoid robot.

Proceedings of The 20th Annual Conference of the Robotics Society of Japan 2002
October 12th-14th, 2002, Osaka, Japan

2.2 Wire
The function of a wire is to connect 2 neurons. For exa m-
ple, for a given neurons “a” and “b”, neuron “a” is con-
nected to “b” as follows
 a := C * b;
where C is the wire’s weighting factor.
2.2.2 Cable-C
 Cable-C consists of changing other wire’s weighting
factor. It is created as follows,

var C(e) = V0;
var a(e1);
var b(e1);
a := C * b;

 The main purpose of this element is to activate the
learning process of the system. In other words, this ele-
ment belongs to the upper level layer.
2.2.4 Cable-W
 The function of cable-W is to change other neuron’s
time delay constant.

var eps(e) = V0;
var a(eps) = W0;

The main purpose of this element is also the same as ca-
ble-C that is to activate the learning process of the system.
It belongs to the upper level layer too.

2.3 Permitted Operations
 By similarity to biological process, only 4 types of op-
erations, as shown in Fig.3, are permitted in our proposed
RNN language, namely summation, multiplication by a
constant, introduction of a time delay, and switching. No-
tice that a threshold can be considered as a switcher.

Notice that “#” is used for comment out.

2.4 RNN Circuits

 A Circuit is a part of a complex system such as
HOAP-1. For example, to create a circuit “Joint” we use
the syntax shown in Fig. 4.

Remark
 Both of cable-C and cable-W involve a nonlinear op-

eration, This does not contradict our previous definition
of the proposed language, since cables belong to a layer
of upper level with a different time scale.

3. Examples of Basic RNN Circuits

3.1 Generator of sine pattern
 Figure 5 shows 2 examples of circuits generating a sine
pattern, where in case (a) the condition C1C2 < 0 must be
satisfied, yet in the case of (b) all weighting factors must

have the s ame absolute value of
32

3

931210812

931210812
/)(+−−

+− .

C1

C2

11

y1

y2

with C1C2 < 0

(a)

C

V0

y3

y2C

- C
- C

y1

With 2.93114≈C

(b)
Fig. 5 Sine pattern generator

 To demonstrate the result of Fig.5a, let’s solve the fol-
lowing system of ordinary differential equations.

 22
1

1 yC
dt

dy
=ε (2)

 11
2

2 yC
dt

dy =ε (3)

By settingε1=ε2=ε, the above equations will be re-
duced to the following

 01212
1

2
2 =− yCC

dt
ydε (4)

The general solution of eq.(4), under the condition
0 CC 21 < , is given by,

)tsin(Ay m ϕω +=1 , (5)

where εω 21CC= , Am and ϕ are parameters de-

pending on the initial conditions.

 The following is how to express the circuit of Fig.5a,
using our developed RNN language

var v(0.0);
var w(0.0);
var y1(e1);
var y2(e2);
y := C1 * y1; #Multiply by a constant
y := C1 * y1 + C2 * y2; #Summation
v := if(0.2 < y1) 1.0 * y; #Switcher
w := 1.0 * (0.2 <) y; #Threshold

Dead neurons
Create 4 neurons

Fig. 3 Permitted operation of the proposed language

input in[2];
output out[1];
circuit Joint {var p; …}
out[0] := 1.0 * ::Joint::p + 1.0 * in[0] +1.0 * in[1];

Fig. 4 Syntax to create a circuit

circuit sin1 {
 var y1(0.1) = 0.0; # e1 = 0.1
 var y2(0.1) = 1.0; # e2 = 0.1
 y1 := 1.0 * y1 + 1.0 * y2; # C1 = 1.0
 y2 := -1.0 * y1 + 1.0 * y2 ; # C2 = 1.0
}

Fig. 6 A circuit that generate a sine pattern

3.2 Generator of polynomial pattern

 Figure 7 shows how to generate a second order poly-
nomial using 2 neurons.

V0
C

1
1

y1y1

Fig. 7 Pattern generator of a second order polynomial

4. Design of HOAP-1 related circuits

4.1 Part of the CPG circuit
 At first, we need to make some convention about the
graphical representation of switcher, threshold, and dead
neuron (a neuron with a null time delay constant), Fig.8.

 Switcher: n := if(0.5 > n2) 1.0 * n1
 (*) : n := if(0.5 < n2) 1.0 * n1

Threshold: n := 1.0 *(0.2 >) n1

Neuron Switcher
Dead

neuron Threshold

n2

n

n1
(*)

0.5

n

n1

0.2

Fig. 8 Different types of neurons.

 Figure 9 shows a part of HOAP-1’s CPG circuit, where
the gear backlashes of both legs at the hip level are com-
pensated.

-11

1

1

y

y1

-12

1

1

y

y1

-13

1

1

y

y1

-14

1

1

y

y1

 a(0)=1

1

0

b1

 0.125 -0.5 0.375

0.5

o11

o1

0.5

o2

1

1
1

1

1

ar

cc
 cc

g1

0

g22

1

0.5

ghr

glr

11

1

1
1

J5

Am5

Am4

J4 J1
-RG

1

J11
-LG

-Am1

-Am11

J14

-Am14

1

0.5

Fig. 9 Part of CPG circuit

 Using the proposed RNN language, the circuit of Fig.9
can be written as shown in Fig 10. Figure 11 shows the
neurons’ outputs.

Remark

 To smooth the velocity of the knee joint, we choose
(sinω)4 as a profile of its angle position. Where ω is
the frequency of the hip rolling motion in [rad/sec].

Fig. 11 Neurons Outputs using the circuit of Fig.9

include "Cst.cpg" # file that contains values of constants
circuit sin1 {
 const C1 = 1.0;

var y1(0.1) = 1.0;
 var y2(0.1) = 0.0;
 y1 := 1.0 * y1 + C1 * y2;
 y2 := - C1 * y1 + 1.0 * y2;
}
circuit sin2 {the same as sin1 with C1=2.0}
circuit sin3 {the same as sin1 with C1=3.0}
circuit sin4 {the same as sin1 with C1=4.0}
define a switcher b
var a(0.0) = 1.0;
a := 1.0 * a;
var b1;
b1 := if(0 > ::sin1::y) 1.0 * a;
var o11(0.0);
o11 :=0.125*::sin4::y2-0.5*::sin2::y2+0.375 * ::const1::y;
var o1(0.0);
o1 := if(0.5 < b1) 1.0 * o11 ;
var o2(0.0);
o2 := if(0.5 > b1) 1.0 * o11 ;
rolling Ankel
var ar(0.0);
ar :=+ 1.0 * ::sin1::y + 0.1 * ::sin3::y;
var g1(0.0);
g1 := 1.0 * (CC<) ar + CC * ::const1::y;
var g22(0.0);
g22 := 1.0 * (0.0<) g1- CC * ::const1::y;
gear hip right
var ghl(0.0);
ghl := if(0.5 < b1) 1.0 * g22 ;
gear hip Left
var ghr(0.0);
ghr := if(0.5 > b1) 1.0 * g22;
var J5(0.0);
J5 := Am5 * ar;
var J4(0.0);
J4 := Am4 * o1;
Joint J1 with gear compensation
var J1(0.0);
J1 := - Am1 * ar - RG * ghr;
var J14(0.0);
J14 := Am14 * o2;
JOINT J11 with gear compensation
var J11(0.0);
J11 := - Am11 * ar - LG * gh l;

Fig. 10 RNN program of the circuit of
Fig.9

4.2 Pitching pattern generator

 To enable the robot to walk forward (or backward), we
generate the pitching pattern of Fig.12. The stance leg has
a motion profile of a third order polynomial, while the
swing leg motion profile is a polynomial of first order.
Figure 13 shows an example of a program that constructs
the pitching pattern of Fig. 12. Notice that the rolling pat-
tern of the hip for HOAP-1, is considered as a base mo-
tion.

5. Conclusion

 In this paper, we proposed an RNN language suitable
for the programmers to reflect the biological process. It is
based on 4 elements namely: neuron, wire, cable -C, and
cable-W. The function of cables is to change the time de-
lay constant of a neuron and the weighting factor of a
connection between two neurons. They have different
time scale compared with the elements they change.

 On the other hand, similarly to biological process, this
notation allows only 4 types of operations, which are
summation, multiplication by a constant, introduction of a
time delay constant, and switching. Using this RNN lan-
guage we generated the CPG circuit of humanoid robot,
and we succeeded in dealing with the gear backlash
problem. Moreover, it is expected that this language can
contribute well in the development of the learning process
and the reflex as well, while being away from handling
high-order ordinary differential equations.

 The simplicity and reliability of this language in re-
flecting the biological model over the traditional language
will be the key for the development of intelligent robot in
the near future.

References

1) S. Jiang and F. Nagashima, “Biologically Inspired Sp i-
nal locomotion Controller for Humanoid Robot”, 19th
Annual Conference of the Robotics Society of Japan, p.
517-518 (2001).
2) Y. Murase, Y. Yasukawa, K. Sakai, and M. Ueki, “De-
sign of Compact Humanoid Robot as a Platform”, 19th
Annual Conference of the Robotics Society of Japan, p.
789-790 (2001).
3) K. Matsuoka, “Mechanisms of Frequency and Pattern
Control in the Neural Rhythm Ge nerators”, Biol. Cybern.
56, p. 345-353 (1987).
4) G. Taga, “A model of the neuro-musculo-skeletal system
for human locomotion, I. Emergence of basic gait”, Boil.
Cybern. 73, p. 97-111 (1995).

Fig. 12 Pitching pattern of HOAP-1

include "Cst.cpg" # file that contains values of constants
circuit sin1P {
 const C = 1.0;
 var y(0.1) = 0.9396926207859;
 var y1(0.1) = 0.342020143325;
 y := 1.0 * y + C * y1;
 y1 := - C * y + 1.0 * y1;
}
circuit sin2P {
 var y(0.1) = -0.9396926207859;
 var y1(0.1) = 0.342020143325;
 y := 1.0 * y + C * y1;
 y1 := - C * y + 1.0 * y1;
}
var a = 1.0;
 a := 1.0 * a;
#______Switcher_______
var t1(0.0);
var t2(0.0);
t1 :=if(0 > ::sin1P::y & ::sin2P::y > 0) -1.0 * a + 0.5 * a;
t2 :=if(0 > ::sin1P::y & ::sin2P::y > 0) -1.0 * a + 0.38888 * a;
#________________________________
var p1(0.1) = 0.0;
p1 := 1.0 * p1+ 1.0 * t2;
#________________________________
var p2(0.0);
p2 := if(0.2 < t2) 1.0 * p1 - if(0.2 < t2) 0.611865238 * a;
#________________________________
var p3(0.1) = 0.0;
var p33(0.0);
var y(0.1) = 0.0;
p3 := 1.0 * p3 + 1.0 * p2;
p33 := if(0.2 < t1) 1.0 * p3+ 0.481 * a- if(0.2 > t1) 0.8595 * a;
y := + 1.0 * y+ 1.0 * p33;

Fig. 13 Pitching pattern of HOAP-1

