
1. Introduction 
 
  Humanoid robot has recently attracted many robotics 
research groups who developed a variety of solutions 
dealing with its motion and behavior. In this direction, 
Fujitsu has made significant efforts tending toward better 
mechanical structure and real-time control software as 
well, by making its first humanoid robot named HOAP-1 
[1, 2], where user demands were considered as a prime 
design concern. 

  In this research, we focused on the biological based 
models using the Recurrent Neural Network (RNN) the-
ory. Consequently, we have developed an RNN language 
suitable for the programmers to reflect the biological 
process. With this notation, the design of RNN circuits 
becomes simple and easy to implement. The procedure 
adopted to construct a large RNN circuit is reduced to a 
simple connection of a set of basic RNN circuits, which 
are found by solving simple ordinary differential equa-
tions. In contrast to the mathematical notations [3, 4], this 
proposed language would be expected to express the 
learning process of HOAP-1 easily, just by changing con-
nections, and their weights for a given RNN circuit. The 
basic idea behind this proposed notation is taken from 
neurobiology, where the spinal cord is assumed to solve 
problems using 4 types of operations namely, summation, 
multiplication by a constant, introduction of a time delay 
constant, and switching. Accordingly, the proposed RNN 
language is limited to these four operations. An example 
of a basic pattern generator of sine oscillation can be ob-
tained by a special coupling of two neurons. Using this 
sine pattern generator, it is possible to generate the Cen-
tral Pattern Generator (CPG) of HOAP-1. 

  The rest of this paper is organized as follows: Next 
section presents the proposed RNN language. Section 3 
describes some basic RNN circuits. Section 4 explains 
how to construct the CPG of HOAP-1, how to compen-
sate gear backlash, and how to generate a pitching pattern. 
Finally, section 5 presents our conclusion. 

2. Proposed RNN Language 
 
2.1 Mathematical model of a neuron 
  The proposed language is a kind of ML-Style  language, 
which is inspired from a biological process . At first we 
define the mathematical model of a single neuron shown 
in Fig.1. 
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where yi is the output of neuron i,εi is a time delay con-
stant, and yj is the output of neuron j that represents an 
input of neuron i through a weighting factor cij. Notice 
thatεi can be interpreted as the rise time constant of a 
step input [3]. 
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Fig. 1 Representation of a single neuron 

2.2 Basic elements 

  To create the RNN language, we define 4 basic ele-
ments summarized in Fig.2, which are neuron, wire, ca-
ble-C, and cable-W. Their definitions are stated below 

(a) (b) (c) (d)  

Fig. 2 Basic elements of the proposed RNN algorithm 
(a): neuron, (b): wire, (c): cable-C, and (d): cable W 

 
2.2.1 Neuron 

  The following is how to create a neuron with a time 
delay constant e and initial value V0, 

var a(e) =  V0; 
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2.2 Wire 
The function of a wire is to connect 2 neurons. For exa m-
ple, for a given neurons “a” and “b”, neuron “a” is con-
nected to “b” as follows 
      a := C * b; 
where C is the wire’s weighting factor. 
2.2.2 Cable-C 
 Cable-C consists of changing other wire’s weighting 
factor. It is created as follows, 

var C(e) =  V0; 
var a(e1); 
var b(e1); 
a := C * b; 

 The main purpose of this element is to activate the 
learning process of the system. In other words, this ele-
ment belongs to the upper level layer. 
2.2.4 Cable-W 
  The function of cable-W is to change other neuron’s 
time delay constant. 

var eps(e) =  V0; 
var a(eps) = W0; 

The main purpose of this element is also the same as ca-
ble-C that is to activate the learning process of the system. 
It belongs to the upper level layer too. 

2.3 Permitted Operations 
  By similarity to biological process, only 4 types of op-
erations, as shown in Fig.3,  are permitted in our proposed 
RNN language, namely summation, multiplication by a 
constant, introduction of a time delay, and switching. No-
tice that a threshold can be considered as a switcher. 

Notice that “#” is used for comment out. 

2.4 RNN Circuits 

  A Circuit is a part of a complex system such as 
HOAP-1. For example, to create a circuit “Joint” we use 
the syntax shown in Fig. 4. 

Remark 
  Both of cable-C and cable-W involve a nonlinear op-

eration, This  does not contradict our previous definition 
of the proposed language, since cables belong to a layer 
of upper level with a different time scale. 
 
3. Examples of Basic RNN Circuits 

3.1 Generator of sine pattern 
  Figure 5 shows 2 examples of circuits generating a sine 
pattern, where in case (a) the condition C1C2 < 0 must be 
satisfied, yet in the case of (b) all weighting factors must 
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Fig. 5 Sine pattern generator 

 To demonstrate the result of Fig.5a, let’s solve the fol-
lowing system of ordinary differential equations. 
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By settingε1=ε2=ε, the above equations will be re-
duced to the following 
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The general solution of eq.(4), under the condition 
0 CC 21 < , is given by, 

 )tsin(Ay m ϕω +=1 ,  (5) 

where εω 21CC= , Am and ϕ  are parameters de-

pending on the initial conditions. 

  The following is how to express the circuit of Fig.5a, 
using our developed RNN language 

 

 
 

var v(0.0); 
var w(0.0); 
var y1(e1);   
var y2(e2); 
y := C1 * y1;         #Multiply by a constant 
y := C1 * y1 + C2 * y2;  #Summation 
v := if(0.2 < y1) 1.0 * y;  #Switcher 
w := 1.0 * (0.2 <) y;  #Threshold 

Dead neurons
Create 4 neurons 

Fig. 3 Permitted operation of the proposed language 

input in[2]; 
output out[1]; 
circuit Joint {var p; …} 
out[0] := 1.0 * ::Joint::p + 1.0 * in[0] +1.0 * in[1]; 

Fig. 4 Syntax to create a circuit  

circuit sin1 { 
  var y1(0.1) = 0.0;  # e1 = 0.1 
  var y2(0.1) = 1.0;   # e2 = 0.1 
  y1 := 1.0 * y1 + 1.0 * y2;  # C1 = 1.0 
  y2 := -1.0 * y1 + 1.0 * y2 ; # C2 = 1.0  
} 

Fig. 6 A circuit that generate a sine pattern 



3.2 Generator of polynomial pattern 

  Figure 7 shows how to generate a second order poly-
nomial using 2 neurons. 
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Fig. 7 Pattern generator of a second order polynomial  
 

4. Design of HOAP-1 related circuits  

4.1 Part of the CPG circuit 
  At first, we need to make some convention about the 
graphical representation of switcher, threshold, and dead 
neuron (a neuron with a null time delay constant), Fig.8. 
 

  Switcher: n := if( 0.5 > n2 ) 1.0 * n1
        ( * ) :  n := if( 0.5 < n2 ) 1.0 * n1

Threshold: n := 1.0 *( 0.2 > ) n1
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Fig. 8 Different types of neurons. 
 

  Figure 9 shows a part of HOAP-1’s CPG circuit, where 
the gear backlashes of both legs at the hip level are com-
pensated.   
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Fig. 9 Part of CPG circuit 

  Using the proposed RNN language, the circuit of Fig.9 
can be written as shown in Fig 10. Figure 11 shows the 
neurons’ outputs. 

 
Remark 

  To smooth the velocity of the knee joint, we choose 
(sinω)4 as a profile of its angle position. Where ω is 
the frequency of the hip rolling motion in [rad/sec]. 

Fig. 11 Neurons Outputs using the circuit of Fig.9 
 

include "Cst.cpg" # file that contains values of constants  
circuit sin1 { 
 const C1 = 1.0; 

var y1(0.1) = 1.0; 
  var y2(0.1) = 0.0; 
  y1 :=  1.0 * y1 + C1 * y2; 
  y2 := - C1 * y1 + 1.0 * y2; 
} 
circuit sin2 {the same as sin1 with C1=2.0} 
circuit sin3 {the same as sin1 with C1=3.0} 
circuit sin4 {the same as sin1 with C1=4.0} 
# define a switcher b 
var a(0.0) = 1.0; 
a := 1.0 * a; 
var b1; 
b1 := if( 0 > ::sin1::y ) 1.0 * a; 
var o11(0.0); 
o11 :=0.125*::sin4::y2-0.5*::sin2::y2+0.375 * ::const1::y; 
var o1(0.0); 
o1 := if(0.5 < b1) 1.0 * o11 ; 
var o2(0.0); 
o2 := if(0.5 > b1) 1.0 * o11 ; 
# rolling Ankel 
var ar(0.0); 
ar :=+ 1.0 * ::sin1::y + 0.1 * ::sin3::y; 
var g1(0.0); 
g1 := 1.0 * (CC<) ar + CC * ::const1::y; 
var g22(0.0); 
g22 := 1.0 * (0.0<) g1- CC * ::const1::y; 
# gear hip right 
var ghl(0.0); 
ghl := if(0.5 < b1) 1.0 * g22 ; 
# gear hip Left  
var ghr(0.0); 
ghr := if(0.5 > b1) 1.0 * g22; 
var J5(0.0); 
J5 := Am5 * ar; 
var J4(0.0); 
J4 := Am4 * o1; 
# Joint J1 with gear compensation 
var J1(0.0); 
J1 := - Am1 * ar - RG * ghr; 
var J14(0.0); 
J14 := Am14 * o2; 
# JOINT J11 with gear compensation 
var J11(0.0); 
J11 :=  - Am11 * ar - LG * gh l; 

Fig. 10 RNN program of the circuit  of 
Fig.9 



4.2 Pitching pattern generator 

  To enable the robot to walk forward (or backward), we 
generate the pitching pattern of Fig.12. The stance leg has 
a motion profile of a third order polynomial, while the 
swing leg motion profile is a polynomial of first order. 
Figure 13 shows an example of a program that constructs 
the pitching pattern of Fig. 12. Notice that the rolling pat-
tern of the hip for HOAP-1, is considered as a base mo-
tion.  

 

 

 

 
5. Conclusion 
 
  In this paper, we proposed an RNN language suitable 
for the programmers to reflect the biological process. It is 
based on 4 elements namely: neuron, wire, cable -C, and 
cable-W. The function of cables is to change the time de-
lay constant of a neuron and the weighting factor of a 
connection between two neurons. They have different 
time scale compared with the elements they change.  

  On the other hand, similarly to biological process, this 
notation allows only 4 types of operations, which are 
summation, multiplication by a constant, introduction of a 
time delay constant, and switching. Using this RNN lan-
guage we generated the CPG circuit of humanoid robot, 
and we succeeded in dealing with the gear backlash 
problem. Moreover, it is expected that this language can 
contribute well in the development of the learning process 
and the reflex as well, while being away from handling 
high-order ordinary differential equations.  

  The simplicity and reliability of this language in re-
flecting the biological model over the traditional language 
will be the key for the development of intelligent robot in 
the near future. 
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Fig. 12 Pitching pattern of HOAP-1 

 

 

include "Cst.cpg" # file that contains values of constants 
circuit sin1P { 
  const C = 1.0; 
  var y(0.1) = 0.9396926207859; 
  var y1(0.1) = 0.342020143325; 
  y  := 1.0 * y + C * y1; 
  y1 := - C * y + 1.0 * y1; 
} 
circuit sin2P { 
  var y(0.1) = -0.9396926207859; 
  var y1(0.1) = 0.342020143325; 
  y  := 1.0 * y + C * y1; 
  y1 := - C * y + 1.0 * y1; 
} 
var a = 1.0; 
 a := 1.0 * a; 
#______Switcher_______ 
var t1(0.0); 
var t2(0.0); 
t1 :=if(0 > ::sin1P::y & ::sin2P::y > 0) -1.0 * a + 0.5 * a; 
t2 :=if(0 > ::sin1P::y & ::sin2P::y > 0) -1.0 * a + 0.38888 * a; 
#________________________________ 
var p1(0.1) = 0.0; 
p1 := 1.0 * p1+ 1.0 * t2; 
#________________________________ 
var p2(0.0); 
p2 :=  if(0.2 < t2) 1.0 * p1 - if(0.2 < t2) 0.611865238 * a; 
#________________________________ 
var p3(0.1) = 0.0; 
var p33(0.0); 
var y(0.1) = 0.0; 
p3 :=  1.0 * p3 + 1.0 * p2; 
p33 := if(0.2 < t1) 1.0 * p3+ 0.481 * a- if(0.2 > t1) 0.8595 * a; 
y := + 1.0 * y+ 1.0 * p33; 

Fig. 13 Pitching pattern of HOAP-1 




