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Abstract—Reinforcement learning is the scheme for unsupervised learning in which robots are
expected to acquire behavior skills through self-explorations based on reward signals. There are
some difficulties, however, in applying conventional reinforcement learning algorithms to motion
control tasks of a robot because most algorithms are concerned with discrete state space and based
on the assumption of complete observability of the state. Real-world environments often have partial
observablility; therefore, robots have to estimate the unobservable hidden states. This paper proposes a
method to solve these two problems by combining the reinforcement learning algorithm and a learning
algorithm for a continuous time recurrent neural network (CTRNN). The CTRNN can learn spatio-
temporal structures in a continuous time and space domain, and can preserve the contextual flow
by a self-organizing appropriate internal memory structure. This enables the robot to deal with the
hidden state problem. We carried out an experiment on the pendulum swing-up task without rotational
speed information. As a result, this task is accomplished in several hundred trials using the proposed
algorithm. In addition, it is shown that the information about the rotational speed of the pendulum,
which is considered as a hidden state, is estimated and encoded on the activation of a context neuron.

Keywords: Recurrent neural network; reinforcement learning; actor–critic method; perceptual aliasing
problem; pendulum swing-up.

1. INTRODUCTION

Animals learn from the consequences of their actions. Actions that are followed
by some reward are more likely to be generated again in the future; conversely,
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actions that are followed by punishment are less likely to reoccur. This ability, to
improve behavior through learning, is important to develop autonomous adaptive
systems. Reinforcement learning is one such machine learning framework in
which a robot takes a series of actions that changes the state of the robot in
an environment and the environment provides feedback in the form of either
reward or punishment as reinforcement signals. Robots change their control
law according to these signals. This learning algorithm does not require a
teacher who tells a robot about the target actions; instead, simply reinforcement
signals are needed. Therefore, this learning algorithm can be a useful tool
for the exploration of creating robot control systems that autonomously learn
through experience. In some studies, reinforcement learning is used to create
developmental robots [1–3]. There are some difficulties, however, in applying
conventional reinforcement learning frameworks to continuous motor control tasks
of robots.

First, most reinforcement learning frameworks are concerned with discrete ac-
tions. When the action space is discrete, the implementation of reinforcement learn-
ing is straightforward [4]. A robot selects the action that is expected to maximize
the sum of total future rewards from a fixed set of actions.

For instance, in an object handling task, a robot learns to select an action such
as reaching, grabbing, carrying or releasing an object for each step. However,
this approach is hardly applicable to smooth behavior such as object grasping [5]
because dividing such a behavior into a set of actions is difficult.

In contrast, when the action domain is continuous, quantizing the action space
and applying the same methods or employing somewhat adapted methods without
quantization [6, 7] is necessary.

Second, most reinforcement learning frameworks consider tasks where the state
is completely observable. Robots that interact with an environment through their
sensors and effectors encounter the perceptual limitation problem. In many cases,
the actual state of the system cannot be identified explicitly just by looking at
the current sensory cues. However, the state of the system can be identified
through more context-dependent methods by utilizing the history of sensory-motor
experiences. Accordingly, the robot needs to learn to use its internal state in
combination with perception. It is shown that this problem, which is called the
‘perceptual aliasing problem’, can be solved by using a kind of memory that stores
previous perceptions [8–10].

In this paper, we propose a reinforcement learning method that can deal with these
problems simultaneously. The main idea of the proposed method is combining
one of the reinforcement learning algorithms with the continuous time recurrent
neural network (CTRNN) learning scheme. In Section 2, we describe the proposed
algorithm. In Section 3, we describe the experiment. Results are shown in Section 4
and we summarize our findings in Section 5.
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2. PROPOSED METHOD

2.1. Reinforcement learning algorithm

The actor–critic method [4] utilized in this study is one of the temporal difference
[11] family of reinforcement learning methods.

As shown in Fig. 1, the controller consists of two parts called an actor and a critic.
In this method, the actor plays the role of a controller whose output decides the
behavior of a robot and the critic approximates the value function V (t).

Temporal difference learning provides an effective approach for the learning robot
which is under the lack of direct teaching signals. However, applying traditional
temporal difference learning to motion control of a robot is difficult due to the
problem of dealing with continuous space and time. For this problem, Doya derived
temporal difference learning for continuous space and time tasks [12].

In his method, a continuous-time deterministic system:

Ẋ(t) = f
(
X(t), U(t)

)
(1)

is considered, where X is the state and U is the action. The goal is to find a policy
(control law) U(t) that maximizes the expected cumulative rewards for a certain
period in the future defined by:

V (t) =
∫ ∞

t

1

τ
e−(s−t)/τ r(s) ds, (2)

where r(t) is the immediate reward for the state at time t . V (t) is called the value
function of state X(t) and τ is the time constant for discounting future rewards. This
infinit-horizon formulation takes the long-run reward that the robot will receive from
the environment. Using an approximation of this function, a robot can estimate the
value of the state even if it cannot receive the reward signal at the time.

The basic idea in temporal difference learning is to predict future reinforcement.
By differentiating (2) with respect to time t we have:

τ
d

dt
V (t) = V (t) − r(t). (3)

The temporal difference error r̂(t) is defined as a prediction error from (3):

r̂(t) = r(t) − 1

τ
V (t) + d

dt
V (t). (4)

If the current prediction for V (t) is accurate, the temporal difference error should
be equal to zero. In addition, if the prediction value for the current state is small,
the temporal difference error becomes positive. Accordingly, in the actor–critic
method, the temporal difference error is used as the reinforcement signal for policy
improvement.
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Figure 1. Actor–critic model.

To implement this algorithm, we use the backward Euler approximation of the
time derivative d

dt
V (t):

r̂(t) =
(

1 − �t

τ

)
V (t) + �t

τ
r(t) − V (t − �t). (5)

2.2. CTRNN

The CTRNN [13] model utilized in this paper is a version of the Jordan-type RNN
model [14] except for two points, i.e., the behavior of output and context neurons
and the way output values are calculated. The network configuration of the CTRNN
model is shown in Fig. 2, in which output and context neurons are dark gray and
other neurons are light gray.

The CTRNN takes the input vector, I (t), and the context vector, C(t), to compute
the output vector, O(t), at every time step, t . The value of each hidden neuronal
activation, Hi(t), is computed from a given input vector and context vector in the
same way as that of a feed-forward neural net:

Hi(t) = σ

(∑

j

Wij Ij (t) +
∑

k

WikCk(t) + θH
i

)
, (6)

where j and k are numbers of input neurons and context neurons, respectively, and
In(t) and Cn(t) are values of the n-th input and context neurons, respectively, at time
step t . At the n-th neuron, the signal from the m-th presynaptic neuron, is weighted
by weight Wnm. The conventional sigmoid function, σ , is defined as following:

σ(x) = 1

1 + e−x
. (7)

Neurons in the output and context layers used the following equations and
parameters. In the following equations, ui is the internal activation state of each
i-th neuron and θi is a bias term. τ is a time constant of a neuron. It affects
the response rate of neuronal activation, which is calculated by the hidden layer
neuronal activation. If the parameter τ is large, the internal value of the neuron
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Figure 2. CTRNN model.

cannot change rapidly. In that case, the CTRNN cannot learn a rapidly change. On
the contrary, the CTRNN has good performance in learning a long and gradually
changing trajectory. In most cases, the values of sensory inputs and motor outputs
do not change rapidly, so the CTRNN is more suitable than conventional RNN for
learning such a continuous trajectory:

yi(t) = σ

(∑

j

WijHj (t) + θ
y

i

)
(8)

τ
d

dt
uO

i (t) = −uO
i (t) + {

yi(t) − 0.5
} × ψO. (9)

The update rule of the internal activation state, uO
i (t), for each integration time step

is given by discretizing (9) where the time step interval �t is defined as 1:

uO
i (t + 1) =

(
1 − �t

τ

)
UO

i (t) + ψO�t

τ

(
yi(t) − 0.5

)
(10)

Oi(t + 1) = σ
(
uO

i (t + 1)
)
. (11)

The neuronal activity of context neurons is calculated in the same way as that of
output neurons by substituting y → z and O → C into equations (8)–(11).

2.3. Reinforcement learning with CTRNN

We introduce the actor–critic method into a CTRNN learning algorithm. In our
algorithm, an actor and a critic are implemented into one CTRNN, as shown in
Fig. 3, to share the context loop which plays an important role in state recognition
[9]. The weight values of context neurons are self-organized to store the contextual
information through learning iterations.
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Figure 3. Actor–critic model implemented in CTRNN.

Input and output neurons represent three types of information described in
Section 2.1, i.e., the value function V (t), observation of the state X(t) and action
U(t). The learning method of the CTRNN is based on the gradient descent
optimization of connection weight values and biases of each neuron to minimize the
learning error of a given set of teaching data. The � errors of the connection weight
and biases are computed by using the conventional back-propagation through time
(BPTT) algorithm [15]. In our method, the teaching data and propagating error are
modulated by the temporal difference error to introduce reinforcement learning.

First, we consider the learning of the value function. The temporal difference
error indicates the inconsistency between the ideal and predicted value functions;
therefore, the teaching data for the neuron representing the value function V (t) is
updated using:

V ∗(t) = V (t) + r̂(t), (12)

where V ∗(t) is the teaching data and V (t) is the value predicted by the current
CTRNN.

Next, we consider a way for improving the action using its associated value
function V (t). It is shown that, in the actor–critic method, the temporal difference
error can be used as the reinforcement signal for the improvement of action [7].
A random noise signal is added to the output of the controller. Under such
conditions, if the temporal difference error is positive, then the output was shifted
to a good direction. From this cause, the output has to be learned substantially
where the temporal difference error is positive. The error signal corresponding to
the output neuron for action is modulated according to:

e(t) = {
Û (t) − Ureal(t)

} × σ(r̂(t) × φ), (13)
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where Û (t) is the action calculated by the CTRNN and Ureal(t) is the actual action
including a noise signal. The sigmoid function σ(x) is used to ensure that the
magnification range is limited between 0 and 1.

2.4. Memory architecture for incremental learning

It is generally observed that if the RNN attempts to learn a new sequence, the content
of the current memory is severely damaged. One way to avoid this problem is to
save all the past teaching data in a database, add new data and use all the data to
retrain the network. The problem with this method, however, is that the learning
time of the RNN is increased by the increasing amount of stored data.

Tani proposed the consolidation-learning algorithm [16] to avoid this problem.
In his method, the newly obtained sequence pattern is stored in the database.
Then, RNN rehearses the memory patterns and these patterns are also saved in the
database. The RNN is trained using both the rehearsed sequential patterns and the
current sequence of the new experience.

In reinforcement learning, CTRNN has to learn a new sequence generated in each
trial, which is inherently incremental learning. A trial, however, is performed in
the close-loop manner including an environment and a CTRNN in which a small
noise signal is added to the action output of the CTRNN. Consequently, a new
sequence partly represents the structure of the past memory in the dynamical system
sense, but not completely. Therefore, we use a database that stores sequences
like in consolidation-learning and the CTRNN is trained using these sequences.
A sequence, stored in the database, is selected by the total reward of the trial. The
maximal total reward in passed trials is stored and the total reward of a new trial is
compared to it. If the total reward of a new trial is greater than a certain rate of a
passed maximal one, then the new sequence is stored in the database.

3. EXPERIMENT

To test the effectiveness of the proposed method, we applied it to the task of
swinging-up a pendulum with limited torque (Fig. 4) [7, 12]. The experiment was
carried out using a physical simulation.

In this task, a robot has to bring a pendulum to an inherently unstable upright
equilibrium by controlling the torque U(t) around the rotational axis. Furthermore,
the maximal torque is smaller than mgl, so the robot has to swing the pendulum
several times to build up sufficient momentum to bring it upright. The state of the
pendulum is defined by the joint angle θ(t) and the pendulum’s rotational speed
θ̇ (t). The equation describing the physics of the pendulum is:

I θ̈(t) = −1

2
mgl sin(θ(t)) − γ ˙θ(t) + U(t), (14)

where U(t) is the torque controlled by the CTRNN. Parameters, used in the
following result, were m = 0.5 kg, l = 1.4 m, g = 9.8 m/s2, γ = 0.1 and I is
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Figure 4. Pendulum with limited torque.

the inertial moment of the pendulum. Driving torque U(t) is constrained within
[−2.0, 2.0], which is smaller than mgl, so the pendulum has to be swung back
and forth at the bottom to build up sufficient momentum for a successful swing
up. Equation (14), calculated in a physical simulation, is discretized using the time
step of 0.00005 s. A CTRNN can change U(t) and observe the state X(t) in every
1000 time steps or 50 ms. Here, a partially observable environment is considered, in
which the robot cannot observe the state information corresponding to the rotational
speed θ̇ (t). The robot has to learn to approximate this information using its internal
state to solve the task.

A CTRNN model with 10 hidden neurons and three context neurons is used. The
time constant τ is defined as 5. There is one observation unit for the joint angle θ(t),
which is normalized to the range [0, 1]. Furthermore, as in the previous section,
there are additional output and input neurons that code for the action output and
value function. Consequently, there are three neurons in input and output layer,
respectively.

The reward signal is given by the height of the tip of the pendulum, i.e. r(t) =
{(1 − cos(θ(t))/2}2. Each trial is started from an initial state θ(0) = 0, θ̇ (0) = 0.
Trials lasted for 120 000 time steps unless the pendulum was over-rotated (|θ(t)| >

2π). Upon such a failure, the trial was terminated with a reward r(t) = −1 for the
last five time steps.

A trial in which the total reward is greater than 80% of the maximal value of
passed trials is stored in the database and used in the learning phase, as described in
Section 2.4.

4. RESULT AND ANALYSIS OF A TRAINING RUN

The time-course of the total reward through learning is shown in Fig. 5. In this
section, only a trial which is used in the learning phase is counted and others are
discarded. The initial performance is about 2.5, but quickly increased to above 20
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Figure 5. Learning curve.

within the first 30 trials. The performance of the CTRNN increase gradually when
there are more learning iterations and the performance of the CTRNN reached its
peak in trial 342. The trajectory of the pendulum in some trials is shown in Fig. 6.

The trajectory starts from the center of the phase space (θ = 0, θ̇ = 0), which
corresponds to the pendulum hanging down-ward. A dot is painted according to the
value function, which is indicated on the right color map, predicted by the CTRNN.

Recall that this task consists of two parts. The first part is swinging the pendulum
several times to build up sufficient momentum to bring it upright and the second step
is maintaining the pendulum in an upright position. As can be seen in Fig. 6a, in the
initial stage, the CTRNN cannot generate appropriate torque sequence to swing the
pendulum, so that the pendulum remains in a lower position and the value function
predicted by CTRNN is almost flat. The CTRNN goes through several trials and
learns to swing the pendulum. The pendulum comes to an upright position, but
the CTRNN cannot maintain this state, as shown in Fig. 6b. In Fig. 6b, the value
function takes a maximal value before the pendulum arrives at the upright position;
therefore, the prediction of the value function is reasonable because the goal of the
critic is to provide a prediction, for each time t in the trial, of the total future reward
that will be gained in the trial from time t to the end of the trial. On the other hand,
the actor part of the CTRNN cannot generate the appropriate torque sequence so the
pendulum is only swung. Therefore, the action policy is immature.

In trial 260 (Fig. 6c), the swing-up trajectory is not much different from that
of a successful trial, but the CTRNN cannot maintain the pendulum in the upright
position. Learning the control law of this 1-d.o.f. system is difficult near the upright
equilibrium because the pendulum is quite unstable and sensitive to torque, so the
CTRNN needs many trials to learn the control law.

Finally, in trial 342, the CTRNN can swing-up the pendulum and maintain the
pendulum in the upright position successfully. The trajectory of this trial is shown
in Fig. 6d and the time course of the system dynamics is shown in Fig. 7. In this
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(a) (b)

(c) (d)

Figure 6. Trajectory of pendulum and predicted value function. (a) Trial 5. (b) Trial 30. (c) Trial
260. (d) Trial 342.

Figure 7. Time course of system dynamics in trial 342.

trial, the maximal value of the predicted value function is 0.89 in the state where
θ = 180 and θ̇ = 0. In trial 30, the pendulum approaches the near state, but the
predicted value is 0.74. This is attributed to the definition of the value function.
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The value function is defined as the expected total reward for a certain period in the
future with the current actor. Therefore, the actor learns to improve the policy, so
the value function has to be changed simultaneously.

The neuronal activations of context neurons are shown in Figs 8–11. The initial

Figure 8. Time-course of context activation and rotational speed in trial 5.

Figure 9. Time-course of context activation and rotational speed in trial 30.

Figure 10. Time-course of context activation and rotational speed in trial 260.
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Figure 11. Time course of context activation and rotational speed in trial 342.

value of all context neuronal activation is set to 0.5 in each trial. It is notable
that weights and biases corresponding to context neurons are randomly initialized
and self-organized during the learning phase. These parameters determine neuronal
activation of context neurons, so neuronal activation of context neurons remains flat
in the early phase of learning, as shown in Fig. 8. Then, after going through several
learning iterations, the neuronal activation of the first context neuron gradually
comes to represent the rotational speed of the pendulum accurately (Figs 9–11). It
is shown that the information about the rotational speed of the pendulum, which is
considered as a hidden state, is estimated and encoded on the activation of a context
neuron.

5. CONCLUSIONS

In this paper, we proposed a reinforcement learning method with CTRNN that
is applicable to continuous motor command learning with the perceptual aliasing
problem. We tested the effectiveness of this method in a nonlinear and partially
observable task. In simulations of the pendulum swing-up task, the rotational speed,
which was not directly observable but needed for solving the task, was estimated.
The learning algorithm proposed in this paper allowed the CTRNN to organize its
internal state space successfully and to use that information.

The pole-balancing or inverted pendulum task is a classical control problem
defined in a continuous space and time domain which has been well studied
[4, 7, 8, 17]. However, these prior studies did not deal with the perceptual aliasing
problem and continuous space and time problem simultaneously. In Doya’s study,
the problem with continuous state and action was considered, but all state variables
of a system were completely observable [7]. Lin and Mitchell used an Elman-type
RNN, which approximates the value function. They also applied their algorithm to
a pole-balancing problem, but their studies employed a discrete action formulation
[8]. It is difficult to apply their algorithm to continuous motor command learning
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because of the limitation of the conventional RNN in learning long-step sequences.
When the action space is continuous, the trajectories that a RNN has to learn
tend to become long-step sequences numerically, as in our experimental cases. A
conventional RNN, which is used in their study, might be inadequate to learn such
long-step sequences using gradient descent learning algorithms as have been shown
in Ref. [18]. For this reason, we investigate the ability of a CTRNN to learn such
long-step sequences and used it in our proposed method.

Two further studies should be carried out. The first is a study of the problem with
the sparseness and delay of the reward signal. In our current study, the reward is
provided in each time step. However, there are many cases in which the reward
signal is not given constantly, but only when a robot arrives at a goal.

The second is a more detailed analysis of the characteristics of the CTRNN
utilized in this paper and a development of the learning algorithm in which time
constant parameter τ is self-determined. In our current method, the time constant
parameter τ is manually defined. The learning performance is dependent on whether
τ is a pertinent value for a trajectory used in training a CTRNN. Therefore, if the
parameter were self-determined, the proposed method could be more adaptive.
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