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ABSTRACT

The problem of tracking curves in dense visual clutter is challenging� Kalman �ltering is in�
adequate because it is based on Gaussian densities which� being unimodal� cannot represent
simultaneous alternative hypotheses� The Condensation algorithm uses �factored sampling��
previously applied to the interpretation of static images� in which the probability distribution
of possible interpretations is represented by a randomly generated set� Condensation uses
learned dynamical models� together with visual observations� to propagate the random set over
time� The result is highly robust tracking of agile motion� Notwithstanding the use of stochastic
methods� the algorithm runs in near real�time�
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� Tracking curves in clutter

The purpose of this paper� is to establish a stochastic framework for tracking curves in visual
clutter� using a sampling algorithm� The approach is rooted in ideas from statistics� control
theory and computer vision� The problem is to track outlines and features of foreground objects�
modelled as curves� as they move in substantial clutter� and to do it at� or close to� video
frame�rate� This is challenging because elements in the background clutter may mimic parts
of foreground features� In the most severe case of camou�age� the background may consist of
objects similar to the foreground object� for instance when a person is moving past a crowd�
Our approach aims to dissolve the resulting ambiguity by applying probabilistic models of object
shape and motion to analyse the video�stream� The degree of generality of these models is pitched
carefully� su	ciently speci�c for e
ective disambiguation but su	ciently general to be broadly
applicable over entire classes of foreground objects�

��� Modelling shape and motion

E
ective methods have arisen in computer vision for modelling shape and motion� When suitable
geometric models of a moving object are available� they can be matched e
ectively to image
data� though usually at considerable computational cost �Hogg� �
��� Lowe� �

�� Sullivan�
�

�� Huttenlocher et al�� �

��� Once an object has been located approximately� tracking it
in subsequent images becomes more e	cient computationally �Lowe� �

��� especially if motion
is modelled as well as shape �Gennery� �

�� Harris� �

��� One important facility is the
modelling of curve segments which interact with images �Fischler and Elschlager� �
��� Yuille
and Hallinan� �

�� or image sequences �Kass et al�� �
��� Dickmanns and Graefe� �
���� This
is more general than modelling entire objects but more clutter�resistant than applying signal�
processing to low�level corners or edges� The methods to be discussed here have been applied at
this level� to segments of parametric B�spline curves �Bartels et al�� �
��� tracking over image
sequences �Menet et al�� �

�� Cipolla and Blake� �

��� The B�spline curves could� in theory�
be parameterised by their control points� In practice this allows too many degrees of freedom
for stable tracking and it is necessary to restrict the curve to a low�dimensional parameter x� for
example over an a	ne space �Koenderink and Van Doorn� �

�� Ullman and Basri� �

�� Blake
et al�� �

��� or more generally allowing a �shape�space� of non�rigid motion �Cootes et al��
�

���

Finally� prior probability densities can be de�ned over the curves �Cootes et al�� �

�� rep�
resented by appropriate parameter vectors x� and also over their motions �Terzopoulos and
Metaxas� �

�� Blake et al�� �

��� and this constitutes a powerful facility for tracking� Reas�
onable defaults can be chosen for those densities� However� it is obviously more satisfactory to
measure or estimate them from data�sequences �x��x�� � � ��� Algorithms to do this� assuming
Gaussian densities� are known in the control�theory literature �Goodwin and Sin� �
��� and have
been applied in computer vision �Blake and Isard� �

�� Baumberg and Hogg� �

��� Given the
prior� and an observation density that characterises the statistical variability of image data z
given a curve state x� a posterior distribution can� in principle� be estimated for xt given zt at
successive times t�

�This paper has appeared in short form �Isard and Blake� ����� as joint winner of the prize of the European
Conference on Computer Vision� �����
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��� Kalman �lters and data�association

Spatio�temporal estimation� the tracking of shape and position over time� has been dealt with
thoroughly by Kalman �ltering� in the relatively clutter�free case in which p�xt� can satisfactorily
be modelled as Gaussian �Dickmanns and Graefe� �
��� Harris� �

�� Gennery� �

�� Rehg and
Kanade� �

�� Matthies et al�� �
�
� and can be applied to curves �Terzopoulos and Szeliski�
�

�� Blake et al�� �

��� These solutions work relatively poorly in clutter which causes the
density for xt to be multi�modal and therefore non�Gaussian� With simple� discrete features
such as points or corners combinatorial data�association methods can be e
ective with clutter
but combinatorial methods to do not apply naturally to curves� There remains a need for an
appropriately general probabilistic mechanism to handle multi�modal density functions�

��� Temporal propagation of conditional densities

The Kalman �lter as a recursive linear estimator is a special case� applying only to Gaussian
densities� of a more general probability density propagation process� In continuous time this can
be described in terms of di
usion� governed by a �Fokker�Planck� equation �Astrom� �
���� in
which the density for xt drifts and spreads under the action of a stochastic model of its dynamics�
In the simple Gaussian case� the di
usion is purely linear and the density function evolves as a
Gaussian pulse that translates� spreads and is reinforced� remaining Gaussian throughout� as in
�gure �� a process that is described analytically and exactly by the Kalman �lter� The random
component of the dynamical model leads to spreading � increasing uncertainty � while the
deterministic component causes the density function to drift bodily� The e
ect of an external
observation zt is to superimpose a reactive e
ect on the di
usion in which the density tends to
peak in the vicinity of observations� In clutter� there are typically several competing observations
and these tend to encourage a non�Gaussian state�density ��gure ���

The Condensation algorithm is designed to address this more general situation� It has
the striking property that� generality notwithstanding� it is a considerably simpler algorithm
than the Kalman �lter� Moreover� despite its use of random sampling which is often thought
to be computationally ine	cient� the Condensation algorithm runs in near real�time� This
is because tracking over time maintains relatively tight distributions for shape at successive
time�steps� and particularly so given the availability of accurate� learned models of shape and
motion�

� Discrete�time propagation of state density

For computational purposes� the propagation process must be set out in terms of discrete time
t� The state of the modelled object at time t is denoted xt and its history is Xt � fx�� � � � �xtg�
Similarly the set of image features at time t is zt with history Zt � fz�� � � � � ztg� Note that
no functional assumptions �linearity� Gaussianity� unimodality� are made about densities in the
general treatment� though particular choices will be made in due course in order to demonstrate
the approach�
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Figure �� Kalman 
lter as density propagation� In the case of Gaussian prior� process and

observation densities� and assuming linear dynamics� the propagation process of �gure � reduces

to a di�using Gaussian state density� represented completely by its evolving �multivariate� mean

and variance � precisely what a Kalman �lter computes�

��� Stochastic dynamics

A somewhat general assumption is made for the probabilistic framework that the object dynam�
ics form a temporal Markov chain so that

p�xtjXt��� � p�xtjxt��� ���

� the new state is conditioned directly only on the immediately preceding state� independent
of the earlier history� This still allows quite general dynamics� including stochastic di
erence
equations of arbitrary order� we use second order models and details are given later� The
dynamics are entirely determined therefore by the form of the conditional density p�xtjxt����
For instance�

p�xtjxt��� � exp��

�
�xt � xt�� � ���

represents a one�dimensional random walk �discrete di
usion� whose step length is a standard
normal variate� superimposed on a rightward drift at unit speed� Of course� for realistic problems�
the state x is multi�dimensional and the density is more complex �and� in the applications
presented later� learned from training sequences��
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Figure �� Probability density propagation� Propagation is depicted here as it occurs over

a discrete time�step� There are three phases	 drift due to the deterministic component of object

dynamics
 di�usion due to the random component
 reactive reinforcement due to observations�

��� Measurement

Observations zt are assumed to be independent� both mutually and with respect to the dynamical
process� This is expressed probabilistically as follows�

p�Zt���xtjXt��� � p�xtjXt���
t��Y
i��

p�zijxi�� ���

Note that integrating over xt implies the mutual conditional independence of observations�

p�ZtjXt� �
tY

i��

p�zijxi�� ���

The observation process is therefore de�ned by specifying the conditional density p�ztjxt� at each
time t� and later� in computational examples� we take this to be a time�independent function
p�zjx�� Su	ce it to say for now that� in clutter� the observation density is multi�modal� Details
will be given in section �
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��� Propagation

Given a continuous�valued Markov chain with independent observations� the conditional state�
density pt at time t is de�ned by

pt�xt� � p�xtjZt��
This represents all information about the state at time t that is deducible from the entire data�
stream up to that time� The rule for propagation of state density over time is�

p�xtjZt� � kt p�ztjxt�p�xtjZt���� ���

where

p�xtjZt��� �
Z
xt��

p�xtjxt���p�xt��jZt��� ���

and kt is a normalisation constant that does not depend on xt� The validity of the rule is proved
in the appendix�

The propagation rule ��� should be interpreted simply as the equivalent of the Bayes� rule
��� for inferring posterior state density from data� for the time�varying case� The e
ective prior
p�xtjZt��� is actually a prediction taken from the posterior p�xt��jZt��� from the previous
time�step� onto which is superimposed one time�step from the dynamical model �Fokker�Planck
drift plus di
usion as in �gure ��� which is expressed in ���� Multiplication in ��� by the
observation density p�ztjxt� in the Bayesian manner then applies the reactive e
ect expected
from observations� Because the observation density is non�Gaussian� the evolving state density
p�xtjZt� is also generally non�Gaussian� The problem now is how to apply a nonlinear �lter to
evaluate the state density over time� without incurring excessive computational load� Inevitably
this means approximating� Numerous approaches� including �multiple hypothesis tracking��
have been proposed but prove unsuitable for use with curves as opposed to discrete features
� details are given in the appendix� In this paper we propose a sampling approach which is
described in the following two sections�

� Factored sampling

This section describes �rst the factored sampling algorithm dealing with non�Gaussian observa�
tions in single images� Then factored sampling is extended in the following section to deal with
temporal image sequences�

A standard problem in statistical pattern recognition is to �nd an object parameterised as
x with prior p�x�� using data z from a single image� The posterior density p�xjz� represents
all the knowledge about x that is deducible from the data� It can be evaluated in principle by
applying Bayes� rule �Papoulis� �

�� to obtain

p�xjz� � kp�zjx�p�x� ���

where k is a normalisation constant that is independent of x� In cases where p�zjx� is su	ciently
complex that p�xjz� cannot be evaluated simply in closed form� iterative sampling techniques
can be used �Geman and Geman� �
��� Ripley and Sutherland� �

�� Grenander et al�� �

��
Storvik� �

��� The factored sampling algorithm �Grenander et al�� �

�� generates a random
variate x from a distribution �p�x� that approximates the posterior p�xjz�� First a sample�set
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fs���� � � � � s�N�g is generated from the prior density p�x� and then an index i � f�� � � � � Ng is
chosen with probability �i� where

�i �
pz�s

�i��PN
j�� pz�s

�j��

and
pz�x� � p�zjx��

the conditional observation density� The value x� � xi chosen in this fashion has a distribution
which approximates the posterior p�xjz� increasingly accurately as N increases ��gure ���

Probability

weighted
sample

posterior
density

State x

Figure �� Factored sampling� A set of points s�i�� the centres of the blobs in the �gure� is

sampled randomly from a prior density p�x�� Each sample is assigned a weight �i �depicted
by blob area� in proportion to the value of the observation density p�zjx � s�i��� The weighted

point�set then serves as a representation of the posterior density p�xjz�� suitable for sampling�

The one�dimensional case illustrated here extends naturally to the practical case that the density

is de�ned over several position and shape variables�

Note that posterior mean properties E �g�x�jz� can be generated directly from the samples
fs�n�g by weighting with pz�x� to give�

E �g�x�jz� �
PN

n�� g�s
�n��pz�s

�n��PN
n�� pz�s

�n��
� ���

For example� the mean can be estimated using g�x� � x �illustrated in �gure �� and the
variance using g�x� � xxT � In the case that p�x� is a spatial Gauss�Markov process� Gibbs
sampling from p�x� has been used to generate the random variates fs���� � � � � s�N�g� Otherwise�
for low�dimensional parameterisations as in this paper� standard� direct methods can be used
for Gaussians� �Press et al�� �
���� Note that� in the case that the density p�zjx� is normal� the
mean obtained by factored sampling is consistent with an estimate obtained more convention�
ally� and e	ciently� from linear least squares estimation� For multi�modal distributions which

�Note� the presence of clutter causes p�zjx� to be non�Gaussian� but the prior p�x� may still happily be
Gaussian� and that is what will be assumed in our experiments�
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cannot be approximated as normal� so that linear estimators are unusable� estimates of mean x
by factored sampling continue to apply�

a� b�

Figure �� Sample�set representation of shape distributions The sample�set representation

of probability distributions� illustrated in one dimension in �gure �� is illustrated here �a� as it

applies to the distribution of a multi�dimensional curve parameter x� Each sample s�n� is shown

as a curve �of varying position and shape� with a thickness proportional to the weight �n� The

weighted mean of the sample set �b� serves as an estimator of the distribution mean�

� The Condensation algorithm

The Condensation algorithm is based on factored sampling but extended to apply iteratively
to successive images in a sequence� The same sampling strategy has been developed elsewhere
�Gordon et al�� �

�� Kitagawa� �

��� presented as developments of Monte�Carlo methods�
Jump�di
usion tracking �Miller et al�� �

�� may also be related to the approach described here�

Given that the process at each time�step is a self�contained iteration of factored sampling� the

output of an iteration will be a weighted� time�stamped sample�set� denoted fs�n�t � n � �� � � � � Ng
with weights �

�n�
t � representing approximately the conditional state�density p�xtjZt� at time t�

How is this sample�set obtained� Clearly the process must begin with a prior density and the
e
ective prior for time�step t should be p�xtjZt���� This prior is of course multi�modal in general
and no functional representation of it is available� It is derived from the sample set representation

f�s�n�t��� �
�n�
t���� n � �� � � � � Ng of p�xt��jZt���� the output from the previous time�step� to which

prediction ��� must then be applied�
The iterative process as applied to sample�sets� depicted in �gure �� mirrors the continuous

di
usion process in �gure �� At the top of the diagram� the output from time�step t � � is

the weighted sample�set f�s�n�t��� �
�n�
t���� n � �� � � � � Ng� The aim is to maintain� at successive

time�steps� sample sets of �xed size N � so that the algorithm can be guaranteed to run within
a given computational resource� The �rst operation therefore is to sample �with replacement�
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Figure �� One time�step in the Condensation algorithm� Each of the three steps � drift�

di�use�measure � of the probabilistic propagation process of �gure � is represented by steps in

the Condensation algorithm�
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N times from the set fs�n�t��g� choosing a given element with probability �
�n�
t��� Some elements�

especially those with high weights� may be chosen several times� leading to identical copies of
elements in the new set� Others with relatively low weights may not be chosen at all�

Each element chosen from the new set is now subjected to the predictive steps� First� an
element undergoes drift and� since this is deterministic� identical elements in the new set undergo
the same drift� This is apparent in the �gure� The second predictive step� di
usion� is random
and identical elements now split because each undergoes its own independent Brownian motion

step� At this stage� the sample set fs�n�t g for the new time�step has been generated but� as yet�
without its weights� it is approximately a fair random sample from the e
ective prior density
p�xtjZt��� for time�step t� Finally� the observation step from factored sampling is applied�
generating weights from the observation density p�ztjxt� to obtain the sample�set representation

f�s�n�t � �
�n�
t �g of state�density for time t�

Figure � gives a synopsis of the algorithm� Note the use of cumulative weights c
�j�
t�� �con�

structed in step �� to achieve e	cient sampling in step �� After any time�step� it is possible to
�report� on the current state� for example by evaluating some moment of the state density as
shown�

One of the striking properties of the Condensation algorithm is its simplicity� compared
with the Kalman �lter� despite its generality� Largely this is due to the absence of the Riccati
equation which appears in the Kalman �lter for the propagation of covariance� The Riccati
equation is relatively complex computationally but is not required in the Condensation al�
gorithm which instead deals with variability by sampling� involving the repeated computation
of a relatively simple propagation formula�

� Stochastic dynamical models for curve motion

In order to apply the Condensation algorithm� which is general� to tracking curves in image�
streams� speci�c probability densities must be established both for the dynamics of the object
and for the observation process� In the examples described here� x is a linear parameterisation of
the curve and allowed transformations of the curve are represented by linear transformations of
x� The Condensation algorithm itself does not demand necessarily a linear parameterisation
though linearity is an attraction for another reason � the availability of algorithms to learn
object dynamics� The algorithm could also be used� in principle� with non�linear parameterised
kinematics � for instance representing an articulated hand in terms of joint angles �Rehg and
Kanade� �

���

��� Linear parameterisations of splines for tracking

We represent the state of a tracked object following methods established for tracking using a
Kalman �lter �Blake et al�� �

��� Objects are modelled as a curve �or set of curves�� typically
though not necessarily the occluding contour� and represented at time t by a parameterised
image curve r�s� t�� The parameterisation is in terms of B�splines� so

r�s� t� � �B�s� �Qx�t�� B�s� �Qy�t�� for � � s � L ���

where B�s� is a vector �B��s�� � � � � BNB �s��
T of B�spline basis functions� Qx and Qy are vectors

of B�spline control point coordinates and L is the number of spans� It usually desirable �Blake
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Iterate

From the �old� sample�set fs�n�t��� �
�n�
t��� c

�n�
t��� n � �� � � � � Ng at time�step t��� construct

a �new� sample�set fs�n�t � �
�n�
t � c

�n�
t g� n � �� � � � � N for time t�

Construct the nth of N new samples as follows�

�� Select a sample s�t
�n� as follows�

�a� generate a random number r � ��� ��� uniformly distributed�

�b� �nd� by binary subdivision� the smallest j for which c
�j�
t�� � r

�c� set s�t
�n� � s

�j�
t��

�� Predict by sampling from

p�xtjxt�� � s�
�n�
t �

to choose each s
�n�
t � For instance� in the case that the dynamics are governed by

a linear stochastic di
erential equation� the new sample value may be generated

as� s
�n�
t � As�

�n�
t � Bw

�n�
t where w

�n�
t is a vector of standard normal random

variates� and BBT is the process noise covariance � see section ��

�� Measure and weight the new position in terms of the measured features zt�

�
�n�
t � p�ztjxt � s

�n�
t �

then normalise so that
P

n �
�n�
t � � and store together with cumulative probab�

ility as �s
�n�
t � �

�n�
t � c

�n�
t � where

c
���
t � ��

c
�n�
t � c

�n���
t � �

�n�
t �n � �� � � � � N��

Once the N samples have been constructed� estimate� if desired� moments of the
tracked position at time�step t as

E �f�xt�� �
NX
n��

�
�n�
t f

�
s
�n�
t

�

obtaining� for instance� a mean position using f�x� � x�

Figure �� The Condensation algorithm�
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et al�� �

�� to restrict the con�guration of the spline to a shape�space of vectors X de�ned by

�
Qx

Qy

�
� WX�

�
Q
x

Q
y

�
� �
�

where the matrixW is a matrix of rank NX considerably lower than the �NB degrees of freedom
of the unconstrained spline� Typically the shape�space may allow a	ne deformations of the
template shape Q� or more generally a space of rigid and non�rigid deformations� The space is
constructed by applying an appropriate combination of three methods to build a W �matrix�

�� determining analytically combinations of contours derived from one or more views �Ullman
and Basri� �

�� Koenderink and Van Doorn� �

�� Blake et al�� �

��� a method that is
usable both for a	ne spaces and for certain classes of articulated object�

�� capturing sequences of key frames of the object in di
erent poses �Blake et al�� �

���

�� performing principal components analysis on a set of outlines of the deforming object
�Cootes et al�� �

�� Baumberg and Hogg� �

�� to derive a small set of representative
contours�

��� Dynamical model

Exploiting earlier work on dynamical modelling �Blake et al�� �

�� Blake et al�� �

��� object
dynamics are modelled as a �nd order process� conveniently represented in discrete time t as a
�nd order linear di
erence equation�

xt � �x � A�xt�� � �x� �Bwt ����

where wt are independent vectors of independent standard normal variables� the state�vector

xt �

�
Xt��

Xt

�
� ����

and where �x is the mean value of the state and A�B are matrices representing the deterministic
and stochastic components of the dynamical model respectively� The system is a set of damped
oscillators� whose modes� natural frequencies and damping constants are determined by A� driven
by random accelerations coupled into the dynamics via B from the noise term Bw� While it is
possible to set sensible defaults for A� �x and B� it is more satisfactory and e
ective to estimate
them from input data taken while the object performs typical motions� Methods for doing this
via Maximum Likelihood Estimation are essential to the work described here and are described
fully elsewhere �Blake et al�� �

�� Reynard et al�� �

���

The dynamical model can be re�expressed in such a way as to make quite clear that it is a
temporal Markov chain�

p�xtjxt��� � exp��

�
kB����xt � x��A�xt�� � x��k� ����

where k � � � k is the Euclidean norm� It is therefore clear that the learned dynamical models are
appropriate for use in the Condensation algorithm�
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��� Initial conditions

Initial conditions for tracking can be determined by specifying the prior density p�x��� and
if this is Gaussian� direct sampling can be used to initialise the Condensation algorithm�
Alternatively it is possible simply to allow the density p�xt� to settle to a steady state p�x���
in the absence of object measurements� Provided the learned dynamics are stable �free of
undamped oscillations� a unique steady state exists� Furthermore� if p�x�� is Gaussian� p�x�� is
Gaussian with parameters that can be computed by iterating the Riccati equation �Gelb� �
����
At this point the density function represents an envelope of possible con�gurations of the object�
as learned during the training phase� �Background clutter� if present� will modify and bias this
envelope to some extent�� Then� as soon as the foreground object arrives and is measured� the
density p�xt� begins to evolve appropriately�

� Observation model

The observation process de�ned by p�ztjxt� is assumed here to be stationary in time �though the
Condensation algorithm does not necessarily demand this� so a static function p�zjx� needs to
be speci�ed� As yet we have no capability to estimate it from data� though that would be ideal�
so some reasonable assumptions must be made� First a measurement model for one�dimensional
data with clutter is suggested� Then an extension is proposed for two�dimensional observations
that is also used later in computational experiments�

��� One�dimensional observations in clutter

In one dimension� observations reduce to a set of scalar positions fz � �z�� z�� � � � � zM �g and the
observation density has the form p�zjx� where x is one�dimensional position� The multiplicity
of measurements re�ects the presence of clutter so either one of the events

�m � ftrue measurement is zmg� m � �� � � � �M

occurs� or else the target object is not visible with probability q � ��Pm P ��m�� Such reasoning
about clutter and false alarms is commonly used in target tracking �Bar�Shalom and Fortmann�
�
���� Now the observation density can be expressed as

p�zjx� � qp�zjclutter� �
MX
m��

p�zjx� �m�P ��m��

A reasonable functional form for this can be obtained by making some speci�c assumptions�
that� P ��m� � p� � m� that the clutter is a Poisson process along the line with spatial density
� and that any true target measurement is unbiased and normally distributed with standard
deviation �� This leads to

p�zjx� � � �
�p

����

X
m

exp� ��m
���

����

where � � q� and �m � zm � x� and is illustrated in �gure �� Peaks in the density function

�There could be some bene	t in allowing the P ��m� to vary withm to re
ect varying degrees of feature�a�nity�
based on contrast� colour or orientation�
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Figure �� One�dimensional observation model� A probabilistic observation model allowing

for clutter and the possibility of missing the target altogether is speci�ed here as a conditional
density p�zjx��

correspond to measured features and the state density will tend to be reinforced in the Con�

densation algorithm at such points� The background level re�ects the possibility that the
true target has not been detected at all� The e
ect on tracking behaviour is to provide for the
possibility of �tunneling�� a good hypothesis should survive a transitory failure of observations
due� for example� to occlusion of the tracked object� The parameters � �units of distance� and
� �units of inverse distance� must be chosen� though in principle they could be estimated from
data by observing measurement error � and both the density of clutter � and probability of
non�detection q�

Considerable economy can be applied� in practice� in the evaluation of the observation dens�
ity� Given a hypothesised position x in the �observation� step ��gure �� it is not necessary to
attend to all features z�� � � � � zM � Any �m for which

�p
����

exp� ��m
���

	 �

can be neglected and this sets a search window around the position x outside which measurements
can be ignored� For practical values of the constants the search window will have a width of
a few �� In practice the clutter is su	ciently sparse and � is su	ciently small that the search
window rarely contains more than one feature�

Note that the density p�zjx� represents the information about x given a �xed number M
of measurements� Potentially� the event �M that there are M measurements� regardless of the
actual values of those measurements� also constitutes information about x� However� we can
reasonably assume here that

P ��M jx� � P ��M ��
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for instance because x is assumed to lie always within the image window� In that case� by Bayes�
theorem�

p�xj�M � � p�x�

� the event �M provides no additional information about the position x� �If x is allowed also
to fall outside the image window then the event �M is informative� a value of M well above the
mean value for the background clutter enhances the probability that x lies within the window��

��� Two�dimensional observations

In a two�dimensional image� the set of observations z is� in principle� the entire set of features
visible in the image� However� an important aspect of earlier systems in achieving real�time per�
formance �Lowe� �

�� Harris� �

�� Blake et al�� �

�� has been the restriction of measurement
to a sparse set of lines normal to the tracked curve� These two apparently con�icting ideas can
be resolved as follows�

The observation density p�zjx� in two dimensions describes the distribution of a �linearly�
parameterised image curve z�s�� given a hypothetical shape in the form of a curve r�s�� � � s � ��
represented by a shape parameter x� The two�dimensional density be derived as an extension
of the one�dimensional case� It is assumed that a mapping g�s� is known that associates each
point z�s� on the image curve with a point r�g�s�� on the shape� In practice this mapping is
set up by tracing normals from the curve r� Note that g�s� is not necessarily injective because
z�s� includes clutter as well as foreground features� Next the one�dimensional density ���� is
approximated in a more amenable form that neglects the possibility of more than one feature
lying inside the search interval�

p�zjx� � exp� �

���
f����	� where f���	� � min���� 	��� ����

	 �
p
�� log��


p
����� is a spatial scale constant� and �� is the �m with smallest magnitude�

representing the feature lying closest to the hypothesised position x� A natural extension to two
dimensions is then

p�zjx� � Z exp� �

�r

Z L

�
f�z��s�� r�s��	� ds ����

in which r is a variance constant and z��s� is the closest associated feature to r�s��

z��s� � z�s�� where s� � arg min
s��g���s�

jr�s�� z�s��j�

Note that the constant of proportionality ��partition function�� Z�x� is an unknown function�
We make the assumption that the variation of Z with x is slow compared with the other term
in ���� so that Z can be treated as constant� It remains to establish whether this assumption is
justi�ed�

The observation density ���� can be computed via a discrete approximation� the simplest
being�

p�zjx� � exp

�
�

MX
m��

�

�rM
f�z��sm�� r�sm��	�

�
� ����

where sm � m
M � This is simply the product of one�dimensional densities ���� with � �
p
rM �

evaluated independently along M curve normals as in �gure ��
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Figure �� Observation process� The thick line is a hypothesised shape� represented as a

parametric spline curve� The spines are curve normals along which high�contrast features �white

crosses� are sought�
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� Applying the Condensation algorithm to video�streams

Four examples are shown here of the practical e	cacy of the Condensation algorithm� Movie
�MPEG� versions of some results are available on the web at http���www�robots�ox�ac�uk��ab��

��� Tracking a multi�modal distribution

The ability of the Condensation algorithm to represent multi�modal distributions was tested
using a �� frame ���� second� sequence of a cluttered room containing three people each facing
the camera ��gure 
�� One of the people moves from right to left� in front of the other two� The

Figure 
� Tracking three people in a cluttered room� The �rst frame of a sequence in

which one �gure moves from right to left in front of two stationary �gures�

shape�space for tracking is built from a hand�drawn template of head and shoulders ��gure ��
which is then allowed to deform via planar a	ne transformations � A Kalman �lter contour�
tracker �Blake et al�� �

�� with default motion parameters is able to track a single moving person
just well enough to obtain a sequence of outline curves that is usable as training data� Given
the high level of clutter� adequate performance with the Kalman �lter is obtained here by means
of background modelling �Rowe and Blake� �

��� a statistical form of background subtraction�
which e
ectively removes clutter from the image data before it is tracked� It transpires� for this
particular training set� that the learned motions comprise primarily horizontal translation� with
vertical translation and horizontal and vertical shear present to a lesser degree�

The learned shape and motion model can now be installed as p�xtjxt��� in the Condens�
ation algorithm which is now run on a test sequence but without the bene�t of background
modelling� so that the background clutter is now visible to the tracker� Figure �� shows how the
state�density evolves as tracking progresses� Initialisation is performed simply by iterating the
stochastic model� in the absence of measurements� to its steady state and it can be seen that this
corresponds� at time �� to a roughly Gaussian distribution� as expected� The distribution rapidly
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Figure ��� Tracking with multi�modal state�density� An approximate depiction of the

state�density is shown� computed by smoothing the distribution of point masses s
���
t � s

���
t � � � � in

the Condensation algorithm� The density is� of course� multi�dimensional
 its projection onto

the horizontal translation axis is shown here� The initial distribution is roughly Gaussian but

this rapidly evolves to acquire peaks corresponding to each of the three people in the scene� The

right�most peak drifts leftwards� following the moving person� coalescing with and separating from

the other two peaks as it moves� Having speci�ed a tracker for one person we e�ectively have�

for free� a multi�person tracker� owing to the innate ability of the Condensation algorithm to

maintain multiple hypotheses�
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collapses down to three peaks which are then maintained appropriately even during temporary
occlusion� Although the tracker was designed to track just one person� the Condensation

algorithm allows the tracking of all three� for free� the ability to represent multi�modal distri�
butions e
ectively provides multiple hypothesis capability� Tracking is based on frame rate ���
ms� sampling in this experiment and distributions are plotted in the �gure for alternate frames�
The experiment was run using a distribution of N � ���� samples per time�step�

��� Tracking rapid motions through clutter

The ability to track more agile motion� still against clutter� was tested using a ��� �eld ���
second� sequence of a girl dancing vigorously to a Scottish reel� The shape�space for tracking
was planar a	ne� based on a hand�drawn template curve for the head outline� The training
sequence consisted of dancing against a largely uncluttered background� tracked by a Kalman
�lter contour�tracker with default dynamics to record ��� �elds ���� seconds� of tracked head
positions� the most that could be tracked before losing lock� Those ��� �elds were su	cient
to learn a bootstrap motion model which then allowed the Kalman �lter to track the training
data for ��� �elds ��� seconds� before loss of lock� The motion model obtained from these ���
�elds was used in experiments with the Condensation tracker and applied to the test data�
now including clutter�

Figure �� shows some stills from the test sequence� with a trail of preceding head positions
to indicate motion� The motion is primarily translation� with some horizontal shear apparent
as the dancer turns her head� Representing the state density with N � ��� samples at each
time�step proves just su	cient for successful tracking� As in the previous example� a prior
density can be computed as the steady state of the motion model and� in this case� that yields
a prior for position that spreads across most of the image area� as might be expected given the
range of the dance� Such a broad distribution cannot e
ectively be represented by just N � ���
samples� One alternative is to increase N in the early stages of tracking� and this is done in a
later experiment� Alternatively� the prior can be based on a narrower distribution whose centre
is positioned by hand over the object at time �� and that is what was done here� Observation
parameters were 	 � ��� � � � with M � �� normals�

Figure �� shows the motion of the centroid of the estimated head position as tracked both
by the Condensation algorithm and by a Kalman �lter using the same motion model� The
Condensation tracker correctly estimated head position throughout the sequence� but after
about �� �elds ����� s�� the Kalman �lter was distracted by clutter� never to recover�

Given that there is only one moving person in this experiment� unlike the previous one in
which there were three� it might seem that a unimodal representation of the state density should
su	ce� This is emphatically not the case� The facility to represent multiple modes is crucial to
robustness as �gure �� illustrates� The �gure shows how the distribution becomes misaligned
�at 
��ms�� reacting to the distracting form of the computer screen� After a further ��ms the
distribution splits into two distinct peaks� one corresponding to clutter �the screen�� one to
the dancer�s head� At this point the clutter peak actually has the higher posterior probability
� a unimodal tracker� for instance a Kalman �lter� would almost certainly discard the lower
peak� rendering it unable to recover� The Condensation algorithm however� capable as it is of
carrying several hypotheses simultaneously� does recover rapidly as the clutter peak decays for
lack of con�rmatory observation� leaving just one peak corresponding to the dancer at 
�� ms�
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�eld 
� ����� ms� �eld ��� ����� ms�

�eld ��� ����� ms� �eld ��� ����� ms�

Figure ��� Tracking agile motion in clutter� The test sequence consists of �

 �elds ��


seconds� of agile dance against a cluttered background� The dancer�s head is tracked through

the sequence� Several representative �elds are shown here� each with a trail of successive mean

tracked head positions at intervals of �
 ms� The Condensation algorithm used N � ���
samples per time�step to obtain these results�
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Time = 10 s Time = 10 s

Figure ��� The Condensation tracker succeeds where a Kalman 
lter fails� The es�

timated centroid for the sequence shown in �gure �� is plotted against time for the entire �


�eld sequence� as tracked �rst by the Condensation tracker� then by a comparable Kalman �l�

ter tracker� The Condensation algorithm correctly estimates the head position throughout the

sequence� The Kalman �lter tracks brie�y� but is soon distracted by clutter and never recovers�

��� Tracking an articulated object

The preceding sequences show motion taking place in a	ne shape�spaces of just � dimensions�
High dimensionality is one of the factors� in addition to agility and clutter� that makes tracking
hard �Blake et al�� �

��� In order to investigate tracking performance in higher dimensions� we
used a ��� �eld ��� second� test sequence of a hand translating� rotating� and �exing its �ngers
independently� over a highly cluttered desk scene ��gure ���� Figure �� shows just how severe
the clutter problem is � the hand is immersed in a dense �eld of edges�

A model of shape and motion model was learned from training sequences of hand motion
against a plain background� tracked by Kalman �lter �using signed edges to help to disambiguate
�nger boundaries�� The procedure comprised several stages� creative assembly of methods from
the available �toolkit� for learning �Blake et al�� �

���

�� Shape�space was constructed from � templates drawn around the hand with the palm
in a �xed orientation and with the �ngers and thumb in various con�gurations� The �
templates combined linearly to form a ��dimensional space of deformations which were
then added to the space of translations to form a � dimensional shape�space�

�� Default dynamics in the shape�space above were adequate to track a clutter�free training
sequence of ��� frames in which the palm of the hand maintained an approximately �xed
attitude�

�� Principal components analysis
 the sequence of ��� hand outlines was replicated with
each hand contour rotated through 
� degrees and the sequences concatenated to give a
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�eld �� �
�� ms� �eld �� �
�� ms�

�eld �� �
�� ms� �eld �� �
�� ms�

Figure ��� Recovering from tracking failure� Detail from � consecutive �elds of the se�

quence illustrated in �gure ��� Each sample from the distribution is plotted on the image� with

intensity scaled to indicate its posterior probability� �Most of the N � ��� samples have too low

a probability to be visible in this display�� In �eld ��� the distribution is misaligned� and has

begun to diverge� In �elds �� and �� it has split into two distinct peaks� the larger attracted to

background clutter� but converges back onto the dancer in �eld ���
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Figure ��� A hand moving over a cluttered desk� Field 
 of a �

 �eld ��
 second� sequence

in which the hand translates� rotates� and the �ngers and thumb �ex independently�

CondensationEdge detector

Figure ��� Severe clutter� Detail of one �eld ��gure ��� from the test�sequence shows the high
level of potential ambiguity� Output from a directional Gaussian edge detector shows that there

are many clutter edges present as potential distractors�
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sequence of ���� deformations� Projecting out the translational component of motion�
the application of Principal Component Analysis �PCA� to the sequence of residual de�
formations of the ���� contours established a ���dimensional space that accounted almost
entirely for deformation� This was then combined with the translational space to form a
���dimensional shape�space that accounted both for the �exing of �ngers and thumb and
also for rotations of the palm�

�� Bootstrapping
 a Kalman �lter with default dynamics in the ���dimensional shape�space
was su	cient to track a training sequence of ��� �elds of the hand translating� rotating�
and �exing �ngers and thumb slowly� This was used to learn a model of motion�

�� Re�learning
 that motion model was installed in a Kalman �lter used to track another�
faster training�sequence of ��� �elds� This allowed a model for more agile motion to be
learned� which was then used in experiments with the Condensation tracker�

Figure ��� Tracking a �exing hand across a cluttered desk� Representative stills from a

�

 �eld ��
 second� sequence show a hand moving over a highly cluttered desk scene� The �ngers

and thumb �ex independently� and the hand translates and rotates� Here the Condensation

algorithm uses N � ���� samples per time�step initially� dropping gradually over � �elds to

N � ��� for the tracking of the remainder of the sequence� The mean con�guration of the

contour is displayed�

Figure �� shows detail of a series of images from a tracked� ��� �eld test�sequence� The initial
state density was simply the steady state of the motion model� obtained by allowing the �lter
to iterate in the absence of observations� Tracker initialisation was facilitated by using more
samples per time�step �N � ����� at time t � �� falling gradually to ��� over the �rst � �elds�
The rest of the sequence was tracked using N � ���� As with the previous example of the
dancer� clutter can distract the tracker but the ability to represent multi�modal state density
means that tracking can recover�

��	 Tracking a camou
aged object

Finally� we tested the ability of the algorithm to track rapid motion against background dis�
traction in the extreme case that background objects actually mimiced the tracked object� A
�� second ���� �eld� sequence showed a bush blowing in the wind� the task being to track one
particular leaf� A template was drawn by hand around a still of one chosen leaf and allowed to
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undergo a	ne deformations during tracking� Given that a clutter�free training sequence was not
available� the motion model was again learned by means of a bootstrap procedure� A tracker
with default dynamics proved capable of tracking the �rst ��� �elds of a training sequence be�
fore losing the leaf� and those tracked positions allowed a �rst approximation to the model to
be learned� Installing that in a Condensation tracker� the entire sequence could be tracked�
though with occasional misalignments� Finally a third learned model was su	cient to track
accurately the entire ���second training sequence� Despite occasional violent gusts of wind and
temporary obscuration by another leaf� the Condensation algorithm successfully followed the
object� as �gure �� shows� In fact� tracking is accurate enough using N � ���� samples to

���� s ���� s

���� s ���� s

Figure ��� Tracking with camou�age� The aim is to track a single camou�aged moving leaf

in this ���second sequence of a bush blowing in the wind� Despite the heavy clutter of distractors

which actually mimic the foreground object� and occasional violent gusts of wind� the chosen

foreground leaf is successfully tracked throughout the sequence� Representative stills depict mean

contour con�gurations� with preceding tracked leaf positions plotted at �
ms intervals to indicate

motion�

separate the foreground leaf from the background reliably� an e
ect which can otherwise only be
achieved using �blue�screening�� Having obtained the model iteratively as above� independent
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test sequences could be tracked without further training� With N � ���� samples per time�step
the tracker runs at ���Hz on a SGI Indy SC���� ���MHz workstation� Reducing this to N � ���
increases processing speed to video frame�rate ���Hz�� at the cost of occasional misalignments
in the mean con�guration of the contour� Observation parameters were 	 � �� � � � with
M � �� normals�

� Conclusions

Tracking in clutter is hard because of the essential multi�modality of the conditional observation
density p�zjx�� In the case of curves multiple�hypothesis tracking is inapplicable and a new
approach is needed� TheCondensation algorithm is a fusion of the statistical factored sampling
algorithm for static� non�Gaussian problems with a stochastic model for object motion� The
result is an algorithm for tracking rigid and non�rigid motion which has been demonstrated to be
far more e
ective in clutter than comparable Kalman �lters� Performance of the Condensation
algorithm improves as the sample size parameterN increases� formally computational complexity
is O�N logN�� although this can be made O�N� with a minor modi�cation to the sampling
procedure� Impressive results have been demonstrated for models with between � and �� degrees
of freedom� even when N is as low as ��� ���� Performance in several cases was improved still
further with an increased value N � ����� In a ��dimensional shape�space� the system currently
runs with N � ��� in real�time ���Hz� on a desk�top graphics workstation �SGI Indy R����SC�
��� MHz��

The new approach raises a number of questions� First� alternative observation models could
be explored in order to make greater use of image intensity variations� though without sacri�cing
too much in the way of photometric invariance� It is to be hoped in the interests of e	ciency
that� as happens with the search window in the edge�based case� computational attention could
be concentrated in a band around the hypothesised curve without signi�cant loss of accuracy in
the model� Such a model would have echoes of correlation matching but of course without the
exhaustive search characteristic of correlation matchers which is quite infeasible in more than
two or three dimensions�

Secondly� the availability of general state densities suggests the need for more general rep�
resentations of those densities� When the density is approximately unimodal� �rst and second
moments may be adequate to convey the likely states� but in the multi�modal case� as for
example when several people are tracked simultaneously� the mean con�guration is not a par�
ticularly useful statistic � it meaninglessly combines the con�gurations of the three people� An
alternative is to attempt to develop a mode �nder capable of pin�pointing several modes when
present� More generally there is a need for �operators� to interrogate densities� for instance�
an operator to �nd a person moving to the right� or to �nd the tallest person� Perhaps such
operators could be formulated as hypothesis tests applied to sample sets�

A third question concerns the random sampling scheme and its e	ciency� Factored sampling
can be ine	cient as the modes of p�zjx� become narrow� One approach is �importance sampling�
�Ripley� �
��� in which a heuristically chosen distribution� approximating p�zjx�� is used to
concentrate random sampling around modes� However� this has the drawback that the prior
p�x� must be repeatedly evaluated whereas� in temporal propagation� the prior �prediction�
p�xtjzt��� cannot be evaluated pointwise� only sampled�

Fourthly and �nally� it is striking that the density propagation equation ��� in the Con�

densation algorithm is a continuous form of the propagation rule of the �forward algorithm�
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for Hidden Markov Models �HMMs� �Rabiner and Bing�Hwang� �

��� The integral over con�
tinuous states in ��� becomes a summation over discrete states in the HMM� with p�xtjxt���
represented by a transition matrix� This suggests a natural opportunity to combine the two so
that mixed discrete!continuous states could be propagated over time� This would allow switch�
ing between multiple models� for instance walk�trot�canter�gallop� each model represented by a
stochastic di
erential equation� with transitions governed by a discrete conditional probability
matrix� It seems likely that such a system could be executed as a Condensation tracker� A
further challenge is to develop a learning algorithm for mixed dynamical models�
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A Non�linear 	ltering

There are four distinct probability distributions represented in a non�linear Bayesian �lter�
Three of them form part of the problem speci�cation and the fourth constitutes the solution�
The three speci�ed distributions are�

�� the prior density p�x� for the state x

�� the process density p�xtjxt��� that describes the stochastic dynamics

�� the observation density p�zjx�
and the �lter evolves over time to generate� as the solution at each time�step� the state�density
pt�x� where pt�xt� � p�xtjZt�� Only when all of the three speci�ed distributions are Gaussian
is the state�density pt also Gaussian� Otherwise� for non�Gaussian pt� it is possible to use one
of a number of approximate �lters� depending on which of the speci�ed densities it is that is
non�Gaussian�

A�� Non�Gaussian prior density

The case that the prior density is non�Gaussian is the simplest to deal with provided only that
it can adequately be represented �or approximated� as an additive Gaussian mixture�

p��x� �
MX
m��

w�m�G�x�	�m�� P
�m�
� ��

In that case� provided that other speci�ed densities are Gaussian� the state density can also be
represented as a corresponding mixture

pt�x� �
MX
m��

w�m�G�x�	
�m�
t � P

�m�
t �

in which the means 	
�m�
t and variances P

�m�
t vary over time but the weights w�m� are �xed� Each

of the M mixture components evolves as an independent Gaussian so that� in fact� the state
density is just a sum of densities from M independent linear Kalman �lters�

A�� Non�Gaussian process density

Non�Gaussian state densities can arise from the nature of the process either because the dy�
namics are driven by non�Gaussian process noise� or� more generally� because the deterministic
dynamics are non�linear� One approach to �ltering is then to approximate the dynamics by
Taylor expansion as a linear process with time�varying coe	cients and proceed as for linear
Kalman �lters� This generates a Gaussian representation of the evolving state�density which
may be a good approximation depending on the nature of the non�linearity� This is the basis
of the �Extended Kalman Filter� �EKF� �Gelb� �
��� Bar�Shalom and Fortmann� �
���� Al�
ternatively� one can attempt a mixture representation� as earlier� but now allowing the weights
w�m� also to vary over time� Unfortunately� even allowing dynamic re�weighting �Sorenson and
Alspach� �
��� does not produce exact solutions for pt�x�� because the individual Gaussian com�
ponents do not remain Gaussian over time� For example� consider the case in which the process
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density p�xtjxt��� is itself an additive mixture of k � � Gaussian components� According to the
Bayesian propagation equation ��� each component of pt splits into k separate components in the
transition from time n to time n��� the total number of components in pt grows exponentially
as kt� Clearly pt must be approximated at each time�step to prune back the number of com�
ponents �Anderson and Moore� �
�
� within some resource�limited bound M � E
ectively there
are Mk full Kalman �lters running at each time�step� each bringing the computational expense
of its own Riccati equation step� Clearly the success of this approach depends on how well the
densities pt and p�xtjxt��� can be approximated with a modest number Mk of components�

A�� Non�Gaussian observation density

In the case of visual tracking in clutter� non�linearity of the tracking �lter arises� as we have
seen� because the observation density p�zjx� is non�Gaussian and� furthermore� is multi�modal so
that it cannot be well approximated by a single Gaussian� Each of the methods just mentioned
for handling non�Gaussian process density� the EKF and Gaussian mixtures� are relevant also
to non�Gaussian observation density but continue to have the same drawbacks� Note that� in
the case of Gaussian mixtures� the number of mixture components again proliferates at each
time�step of ���� albeit via a di
erent mechanism involving products of Gaussians rather than
convolutions� Even this assumes that the observation density can be approximated as a mixture
but in clutter this becomes rather ine	cient� requiring at least one component per visible feature�

There is an additional class of techniques which applies to this case when the non�Gaussian
state density arises from clutter of a particular sort� In the simplest case� one of a �nite set
of measurements zt � fzt��� � � � � zt�kg at time n is to be associated with the state xt at time t�
Heuristic mechanisms such as the validation gate and the probabilistic data�association �lter
�PDAF� �Bar�Shalom and Fortmann� �
��� attempt to deal with the ambiguity of association�
Alternatively it can� in principle� be dealt with exactly by �multiple hypothesis �ltering� but
with computational cost that grows exponentially over time and which is therefore ruled out
in practice� The �RANSAC� algorithm �Fischler and Bolles� �
��� deals probabilistically with
multiple observations but the observations have to be discrete� and there is no mechanism for
temporal propagation� More complex methods including the Joint PDAF �JPDAF� �Bar�Shalom
and Fortmann� �
��� Rao� �

�� address the more di	cult problem of associating not simply
single features but subsequences of Zt with the state� However� these methods rely on the
existence of discrete features� In contour tracking the features are continuous curves and so are
not naturally amenable to discrete association�

A�	 Direct integration

Finally� one very general approach to nonlinear �ltering must be mentioned� This is simply
to integrate ��� directly� using a suitable numerical representation of the state density such as
�nite elements� This in essence is what �Bucy� �
�
� proposed and more recently �Hager� �

��
investigated with respect to robotics applications� It is usable in one or two dimensions but�
complexity being exponential in the dimension� is altogether infeasible for problems of dimension
around � ��� typical of the tracking problems dealt with here� The Condensation algorithm
is designed to o
er a viable alternative�
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B Derivation of the sampling rule

The correctness of the sampling rule ��� on page � is proved by �rst deriving two lemmas from
the independence assumption ���� �This is similar to the derivation found in �Bar�Shalom and
Fortmann� �
���� except that our independence assumptions are explicitly speci�ed��

Lemma �

p�ztjXt�Zt��� � p�ztjxt��
Proof


p�ZtjXt� � p�zt�Zt��jXt�
� p�ztjZt���Xt�p�Zt��jXt�

� p�ztjZt���Xt�
t��Y
i��

p�zijxi��

�Taking ��� at time t and integrating w�r�t� zt yields the reduction of the second term in line
��� Now� using ��� again gives the result�

Lemma �

p�xtjXt���Zt��� � p�xtjxt����
Proof


p�xt�Zt��jXt��� � p�xtjXt���p�Zt��jXt���
from ��� so

p�xtjZt���Xt��� � p�xtjXt��� � p�xtjxt����
using the Markov assumption ����
Derivation of the propagation formula� consider

p�XtjZt� �
p�ztjXt�Zt���p�XtjZt���

p�ztjZt���
� kt p�ztjXt�Zt���p�XtjZt���
� kt p�ztjxt�p�XtjZt��� using lemma ��

Now integrating w�r�t� Xt�� gives

p�xtjZt� � kt p�ztjxt�p�xtjZt����
The last term can be expanded�

p�xtjZt��� �

Z
Xt��

p�xtjXt���Zt���p�Xt��jZt���

�

Z
xt��

Z
Xt��

p�xtjxt���p�Xt��jZt��� using lemma �

�

Z
xt��

p�xtjxt���p�xt��jZt���

which is the required result�
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C Asymptotic correctness of the Condensation Algorithm

The Condensation algorithm is validated here by a probabilistic argument showing that the
sample�set representation of conditional density is correct� asymptotically� as the size N of the
sample set at each time�step gets large� The argument is based on the one by Grenander et

al� to justify their factored sampling algorithm for interpretation of static images� They use
the standard probabilistic tool of �weak convergence� �Rao� �
��� and the �weak law of large
numbers� to show that a posterior distribution inferred by factored sampling can be made
arbitrarily accurate by choosing N su	ciently large� No formal indication is given as to how
large N should be for a given level of accuracy� something which is determined in practice by
experimentation�

In the proof that follows� the correctness proof for factored sampling of a static image is made
inductive so that it can be applied to successive images in a sequence� This would be su	cient
to apply several independent images to the estimation of a static underlying object� A further
generalisation takes account of the predictive step �step � of the Condensation algorithm� that
deals with the dynamics of an object in motion�

C�� Factored sampling

The asymptotic correctness of the factored sampling algorithm �section �� is expressed in a
theorem of Grenander et al ��

���

Theorem � �Factored sampling� If �p�pz is an �absolutely continuous� density function

�with � a suitable normalisation constant� then for any given value x

�p�x�
 �p��x�pz�x�� weakly� as N 
�

� pointwise� weak convergence of the density function to the required posterior�

�Recall �p is the density function of the random variate x generated by factored sampling� as
de�ned in section ��� The proof of the theorem was given by Grenander et al��

C�� Dynamic extension of factored sampling

The �rst step in the extension for dynamic problems is to state a corollary of the theorem above
that generalises it slightly to the case where the prior is not known exactly but has itself been
simulated approximately�

Cor� � �Weak factored sampling� The sequence s�� � � � � sN is now generated by sampling

from a density ps chosen such that

ps�x�
 p��x�� weakly� as N 
��

where convergence is uniform with respect to x� Provided pz is bounded� the random variate x�

generated from the sn as before has a density function �p for which

�p�x�
 �p��x�pz�x� weakly� as N 
�

and convergence is uniform with respect to x�

The proof of this corollary is straightforward�
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C�� Propagation of approximated state density

First note that the samples s
�n�
t generated by the algorithm can themselves be regarded as ran�

dom variables� Using the corollary it is possible to establish that asymptotically the probability

density of any given s
�n�
t converges to the desired probability density p�xtjZt��� � From now on

the limit symbol
 is used to denote weak� uniform convergence of density functions as N 
��
The correctness result is expressed in the theorem below� We �rst require a normalisation as�
sumption for the process density� thatZ

p�xtjxt��� dxt�� is bounded�� ����

Theorem � �Weak propagation� Each sample s
�n�
t � n � �� � � � � N at time t is drawn from a

distribution with density �pt such that

�pt�xt�
 p�xtjZt����

Proof

The proof is inductive� Suppose the result holds for �pt��� then after step � of the algorithm in
�gure �� by the corollary� and observing that the sampling probabilities are

�
�n�
t�� � p�zt��jxt�� � s

�n�
t����

each s�
�n�
t�� has a density p�t�� such that

p�t�� 
 �t��p�xt��jZt���p�zt��jxt���

where �t�� is a normalisation constant so that

p�t�� 
 p�xt��jZt����

In step � of the algorithm the random dynamical step is applied to s�
�n�
t to give s

�n�
t with

density p�� such that

p���xt� �

Z
p�xtjxt�� � s�

�n�
t � p�s�

�n�
t � ds�

�n�
t

�

Z
p�xtjxt���p��xt��� dxt��



Z
p�xtjxt���p�xt��jZt��� dxt�� �making use of �����

� p�xtjZt���

and this is the required density function for s
�n�
t � establishing the inductive step as required�

Finally the ground instance is straightforward� Initial samples s�
�n�
� are drawn in step � from

the prior p� so that� after step � of the algorithm� the s
�n�
� are sampled predictions for time t � �

from a density �p� such that
�p��x�� � p�x�� � p�x�jZ���

�This assumption is not restrictive in practice but is a little inelegant and perhaps there is a way to do without
it�
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�Z� is an empty set� so certainly
�p��x��
 p�x�jZ��

as required�
Note that convergence has not been proved to be uniform in t� For a given �xed t� there is

convergence as N 
� but nothing is said about the limit t
�� In practice this could mean
that at later times t larger values of N may be required� though that could depend also on other
factors such as the nature of the dynamical model�


